summaryrefslogtreecommitdiffstats
path: root/kernel/rcu/tree.h
AgeCommit message (Collapse)Author
2014-11-13Merge branches 'torture.2014.11.03a', 'cpu.2014.11.03a', 'doc.2014.11.13a', ↵Paul E. McKenney
'fixes.2014.11.13a', 'signal.2014.10.29a' and 'rt.2014.10.29a' into HEAD cpu.2014.11.03a: Changes for per-CPU variables. doc.2014.11.13a: Documentation updates. fixes.2014.11.13a: Miscellaneous fixes. signal.2014.10.29a: Signal changes. rt.2014.10.29a: Real-time changes. torture.2014.11.03a: torture-test changes.
2014-11-03rcu: Remove "cpu" argument to rcu_cleanup_after_idle()Paul E. McKenney
The "cpu" argument to rcu_cleanup_after_idle() is always the current CPU, so drop it. This moves the smp_processor_id() from the caller to rcu_cleanup_after_idle(), saving argument-passing overhead. Again, the anticipated cross-CPU uses of these functions has been replaced by NO_HZ_FULL. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
2014-11-03rcu: Remove "cpu" argument to rcu_prepare_for_idle()Paul E. McKenney
The "cpu" argument to rcu_prepare_for_idle() is always the current CPU, so drop it. This in turn allows two of the uses of "cpu" in this function to be replaced with a this_cpu_ptr() and the third by smp_processor_id(), replacing that of the call to rcu_prepare_for_idle(). Again, the anticipated cross-CPU uses of these functions has been replaced by NO_HZ_FULL. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
2014-11-03rcu: Remove "cpu" argument to rcu_note_context_switch()Paul E. McKenney
The "cpu" argument to rcu_note_context_switch() is always the current CPU, so drop it. This in turn allows the "cpu" argument to rcu_preempt_note_context_switch() to be removed, which allows the sole use of "cpu" in both functions to be replaced with a this_cpu_ptr(). Again, the anticipated cross-CPU uses of these functions has been replaced by NO_HZ_FULL. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
2014-11-03rcu: Remove "cpu" argument to rcu_preempt_check_callbacks()Paul E. McKenney
Because rcu_preempt_check_callbacks()'s argument is guaranteed to always be the current CPU, drop the argument and replace per_cpu() with __this_cpu_read(). Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
2014-11-03rcu: Remove rcu_dynticks * parameters when they are always ↵Christoph Lameter
this_cpu_ptr(&rcu_dynticks) For some functions in kernel/rcu/tree* the rdtp parameter is always this_cpu_ptr(rdtp). Remove the parameter if constant and calculate the pointer in function. This will have the advantage that it is obvious that the address are all per cpu offsets and thus it will enable the use of this_cpu_ops in the future. Signed-off-by: Christoph Lameter <cl@linux.com> [ paulmck: Forward-ported to rcu/dev, whitespace adjustment. ] Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Pranith Kumar <bobby.prani@gmail.com>
2014-10-29rcu: Remove redundant TREE_PREEMPT_RCU config optionPranith Kumar
PREEMPT_RCU and TREE_PREEMPT_RCU serve the same function after TINY_PREEMPT_RCU has been removed. This patch removes TREE_PREEMPT_RCU and uses PREEMPT_RCU config option in its place. Signed-off-by: Pranith Kumar <bobby.prani@gmail.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2014-10-28rcu: Make rcu_barrier() understand about missing rcuo kthreadsPaul E. McKenney
Commit 35ce7f29a44a (rcu: Create rcuo kthreads only for onlined CPUs) avoids creating rcuo kthreads for CPUs that never come online. This fixes a bug in many instances of firmware: Instead of lying about their age, these systems instead lie about the number of CPUs that they have. Before commit 35ce7f29a44a, this could result in huge numbers of useless rcuo kthreads being created. It appears that experience indicates that I should have told the people suffering from this problem to fix their broken firmware, but I instead produced what turned out to be a partial fix. The missing piece supplied by this commit makes sure that rcu_barrier() knows not to post callbacks for no-CBs CPUs that have not yet come online, because otherwise rcu_barrier() will hang on systems having firmware that lies about the number of CPUs. It is tempting to simply have rcu_barrier() refuse to post a callback on any no-CBs CPU that does not have an rcuo kthread. This unfortunately does not work because rcu_barrier() is required to wait for all pending callbacks. It is therefore required to wait even for those callbacks that cannot possibly be invoked. Even if doing so hangs the system. Given that posting a callback to a no-CBs CPU that does not yet have an rcuo kthread can hang rcu_barrier(), It is tempting to report an error in this case. Unfortunately, this will result in false positives at boot time, when it is perfectly legal to post callbacks to the boot CPU before the scheduler has started, in other words, before it is legal to invoke rcu_barrier(). So this commit instead has rcu_barrier() avoid posting callbacks to CPUs having neither rcuo kthread nor pending callbacks, and has it complain bitterly if it finds CPUs having no rcuo kthread but some pending callbacks. And when rcu_barrier() does find CPUs having no rcuo kthread but pending callbacks, as noted earlier, it has no choice but to hang indefinitely. Reported-by: Yanko Kaneti <yaneti@declera.com> Reported-by: Jay Vosburgh <jay.vosburgh@canonical.com> Reported-by: Meelis Roos <mroos@linux.ee> Reported-by: Eric B Munson <emunson@akamai.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Eric B Munson <emunson@akamai.com> Tested-by: Jay Vosburgh <jay.vosburgh@canonical.com> Tested-by: Yanko Kaneti <yaneti@declera.com> Tested-by: Kevin Fenzi <kevin@scrye.com> Tested-by: Meelis Roos <mroos@linux.ee>
2014-09-16Merge branch 'rcu-tasks.2014.09.10a' into HEADPaul E. McKenney
rcu-tasks.2014.09.10a: Add RCU-tasks flavor of RCU.
2014-09-16Merge branches 'doc.2014.09.07a', 'fixes.2014.09.10a', ↵Paul E. McKenney
'nocb-nohz.2014.09.16b' and 'torture.2014.09.07a' into HEAD doc.2014.09.07a: Documentation updates. fixes.2014.09.10a: Miscellaneous fixes. nocb-nohz.2014.09.16b: No-CBs CPUs and NO_HZ_FULL updates. torture.2014.09.07a: Torture-test updates.
2014-09-16rcu: Create rcuo kthreads only for onlined CPUsPaul E. McKenney
RCU currently uses for_each_possible_cpu() to spawn rcuo kthreads, which can result in more rcuo kthreads than one would expect, for example, derRichard reported 64 CPUs worth of rcuo kthreads on an 8-CPU image. This commit therefore creates rcuo kthreads only for those CPUs that actually come online. This was reported by derRichard on the OFTC IRC network. Reported-by: Richard Weinberger <richard@nod.at> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org> Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2014-09-16rcu: Rationalize kthread spawningPaul E. McKenney
Currently, RCU spawns kthreads from several different early_initcall() functions. Although this has served RCU well for quite some time, as more kthreads are added a more deterministic approach is required. This commit therefore causes all of RCU's early-boot kthreads to be spawned from a single early_initcall() function. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org> Tested-by: Paul Gortmaker <paul.gortmaker@windriver.com>
2014-09-07rcu: Make TASKS_RCU handle nohz_full= CPUsPaul E. McKenney
Currently TASKS_RCU would ignore a CPU running a task in nohz_full= usermode execution. There would be neither a context switch nor a scheduling-clock interrupt to tell TASKS_RCU that the task in question had passed through a quiescent state. The grace period would therefore extend indefinitely. This commit therefore makes RCU's dyntick-idle subsystem record the task_struct structure of the task that is running in dyntick-idle mode on each CPU. The TASKS_RCU grace period can then access this information and record a quiescent state on behalf of any CPU running in dyntick-idle usermode. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2014-09-07rcu: Break more call_rcu() deadlock involving scheduler and perfPaul E. McKenney
Commit 96d3fd0d315a9 (rcu: Break call_rcu() deadlock involving scheduler and perf) covered the case where __call_rcu_nocb_enqueue() needs to wake the rcuo kthread due to the queue being initially empty, but did not do anything for the case where the queue was overflowing. This commit therefore also defers wakeup for the overflow case. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2014-08-28rcu: Make nocb leader kthreads process pending callbacks after spawningPranith Kumar
The nocb callbacks generated before the nocb kthreads are spawned are enqueued in the nocb queue for later processing. Commit fbce7497ee5af ("rcu: Parallelize and economize NOCB kthread wakeups") introduced nocb leader kthreads which checked the nocb_leader_wake flag to see if there were any such pending callbacks. A case was reported in which newly spawned leader kthreads were not processing the pending callbacks as this flag was not set, which led to a boot hang. The following commit ensures that the newly spawned nocb kthreads process the pending callbacks by allowing the kthreads to run immediately after spawning instead of waiting. This is done by inverting the logic of nocb_leader_wake tests to nocb_leader_sleep which allows us to use the default initialization of this flag to 0 to let the kthreads run. Reported-by: Amit Shah <amit.shah@redhat.com> Signed-off-by: Pranith Kumar <bobby.prani@gmail.com> Link: http://www.spinics.net/lists/kernel/msg1802899.html [ paulmck: Backported to v3.17-rc2. ] Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Amit Shah <amit.shah@redhat.com>
2014-07-09Merge branches 'doc.2014.07.08a', 'fixes.2014.07.09a', ↵Paul E. McKenney
'maintainers.2014.07.08b', 'nocbs.2014.07.07a' and 'torture.2014.07.07a' into HEAD doc.2014.07.08a: Documentation updates. fixes.2014.07.09a: Miscellaneous fixes. maintainers.2014.07.08b: Maintainership updates. nocbs.2014.07.07a: Callback-offloading fixes. torture.2014.07.07a: Torture-test updates.
2014-07-09rcu: Simplify priority boosting by putting rt_mutex in rcu_nodePaul E. McKenney
RCU priority boosting currently checks for boosting via a pointer in task_struct. However, this is not needed: As Oleg noted, if the rt_mutex is placed in the rcu_node instead of on the booster's stack, the boostee can simply check it see if it owns the lock. This commit makes this change, shrinking task_struct by one pointer and the kernel by thirteen lines. Suggested-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2014-07-09rcu: Allow post-unlock reference for rt_mutexPaul E. McKenney
The current approach to RCU priority boosting uses an rt_mutex strictly for its priority-boosting side effects. The rt_mutex_init_proxy_locked() function is used by the booster to initialize the lock as held by the boostee. The booster then uses rt_mutex_lock() to acquire this rt_mutex, which priority-boosts the boostee. When the boostee reaches the end of its outermost RCU read-side critical section, it checks a field in its task structure to see whether it has been boosted, and, if so, uses rt_mutex_unlock() to release the rt_mutex. The booster can then go on to boost the next task that is blocking the current RCU grace period. But reasonable implementations of rt_mutex_unlock() might result in the boostee referencing the rt_mutex's data after releasing it. But the booster might have re-initialized the rt_mutex between the time that the boostee released it and the time that it later referenced it. This is clearly asking for trouble, so this commit introduces a completion that forces the booster to wait until the boostee has completely finished with the rt_mutex, thus avoiding the case where the booster is re-initializing the rt_mutex before the last boostee's last reference to that rt_mutex. This of course does introduce some overhead, but the priority-boosting code paths are miles from any possible fastpath, and the overhead of executing the completion will normally be quite small compared to the overhead of priority boosting and deboosting, so this should be OK. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2014-07-07rcu: Parallelize and economize NOCB kthread wakeupsPaul E. McKenney
An 80-CPU system with a context-switch-heavy workload can require so many NOCB kthread wakeups that the RCU grace-period kthreads spend several tens of percent of a CPU just awakening things. This clearly will not scale well: If you add enough CPUs, the RCU grace-period kthreads would get behind, increasing grace-period latency. To avoid this problem, this commit divides the NOCB kthreads into leaders and followers, where the grace-period kthreads awaken the leaders each of whom in turn awakens its followers. By default, the number of groups of kthreads is the square root of the number of CPUs, but this default may be overridden using the rcutree.rcu_nocb_leader_stride boot parameter. This reduces the number of wakeups done per grace period by the RCU grace-period kthread by the square root of the number of CPUs, but of course by shifting those wakeups to the leaders. In addition, because the leaders do grace periods on behalf of their respective followers, the number of wakeups of the followers decreases by up to a factor of two. Instead of being awakened once when new callbacks arrive and again at the end of the grace period, the followers are awakened only at the end of the grace period. For a numerical example, in a 4096-CPU system, the grace-period kthread would awaken 64 leaders, each of which would awaken its 63 followers at the end of the grace period. This compares favorably with the 79 wakeups for the grace-period kthread on an 80-CPU system. Reported-by: Rik van Riel <riel@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2014-06-23rcu: Reduce overhead of cond_resched() checks for RCUPaul E. McKenney
Commit ac1bea85781e (Make cond_resched() report RCU quiescent states) fixed a problem where a CPU looping in the kernel with but one runnable task would give RCU CPU stall warnings, even if the in-kernel loop contained cond_resched() calls. Unfortunately, in so doing, it introduced performance regressions in Anton Blanchard's will-it-scale "open1" test. The problem appears to be not so much the increased cond_resched() path length as an increase in the rate at which grace periods complete, which increased per-update grace-period overhead. This commit takes a different approach to fixing this bug, mainly by moving the RCU-visible quiescent state from cond_resched() to rcu_note_context_switch(), and by further reducing the check to a simple non-zero test of a single per-CPU variable. However, this approach requires that the force-quiescent-state processing send resched IPIs to the offending CPUs. These will be sent only once the grace period has reached an age specified by the boot/sysfs parameter rcutree.jiffies_till_sched_qs, or once the grace period reaches an age halfway to the point at which RCU CPU stall warnings will be emitted, whichever comes first. Reported-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Christoph Lameter <cl@gentwo.org> Cc: Mike Galbraith <umgwanakikbuti@gmail.com> Cc: Eric Dumazet <eric.dumazet@gmail.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org> [ paulmck: Made rcu_momentary_dyntick_idle() as suggested by the ktest build robot. Also fixed smp_mb() comment as noted by Oleg Nesterov. ] Merge with e552592e (Reduce overhead of cond_resched() checks for RCU) Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2014-05-14Merge branches 'doc.2014.04.29a', 'fixes.2014.04.29a' and ↵Paul E. McKenney
'torture.2014.05.14a' into HEAD doc.2014.04.29a: Documentation updates. fixes.2014.04.29a: Miscellaneous fixes. torture.2014.05.14a: RCU/Lock torture tests.
2014-05-14rcutorture: Export RCU grace-period kthread wait state to rcutorturePaul E. McKenney
This commit allows rcutorture to print additional state for the RCU grace-period kthreads in cases where RCU seems reluctant to start a new grace period. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-04-29rcu: Make callers awaken grace-period kthreadPaul E. McKenney
The rcu_start_gp_advanced() function currently uses irq_work_queue() to defer wakeups of the RCU grace-period kthread. This deferring is necessary to avoid RCU-scheduler deadlocks involving the rcu_node structure's lock, meaning that RCU cannot call any of the scheduler's wake-up functions while holding one of these locks. Unfortunately, the second and subsequent calls to irq_work_queue() are ignored, and the first call will be ignored (aside from queuing the work item) if the scheduler-clock tick is turned off. This is OK for many uses, especially those where irq_work_queue() is called from an interrupt or softirq handler, because in those cases the scheduler-clock-tick state will be re-evaluated, which will turn the scheduler-clock tick back on. On the next tick, any deferred work will then be processed. However, this strategy does not always work for RCU, which can be invoked at process level from idle CPUs. In this case, the tick might never be turned back on, indefinitely defering a grace-period start request. Note that the RCU CPU stall detector cannot see this condition, because there is no RCU grace period in progress. Therefore, we can (and do!) see long tens-of-seconds stalls in grace-period handling. In theory, we could see a full grace-period hang, but rcutorture testing to date has seen only the tens-of-seconds stalls. Event tracing demonstrates that irq_work_queue() is being called repeatedly to no effect during these stalls: The "newreq" event appears repeatedly from a task that is not one of the grace-period kthreads. In theory, irq_work_queue() might be fixed to avoid this sort of issue, but RCU's requirements are unusual and it is quite straightforward to pass wake-up responsibility up through RCU's call chain, so that the wakeup happens when the offending locks are released. This commit therefore makes this change. The rcu_start_gp_advanced(), rcu_start_future_gp(), rcu_accelerate_cbs(), rcu_advance_cbs(), __note_gp_changes(), and rcu_start_gp() functions now return a boolean which indicates when a wake-up is needed. A new rcu_gp_kthread_wake() does the wakeup when it is necessary and safe to do so: No self-wakes, no wake-ups if the ->gp_flags field indicates there is no need (as in someone else did the wake-up before we got around to it), and no wake-ups before the grace-period kthread has been created. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-04-29rcu: Remove unused rcu_data structure fieldIulia Manda
The ->preemptible field in rcu_data is only initialized in the function rcu_init_percpu_data(), and never used. This commit therefore removes this field. Signed-off-by: Iulia Manda <iulia.manda21@gmail.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-04-29rcu: Update cpu_needs_another_gp() for futures from non-NOCB CPUsPaul E. McKenney
In the old days, the only source of requests for future grace periods was NOCB CPUs. This has changed: CPUs routinely post requests for future grace periods in order to promote power efficiency and reduce OS jitter with minimal impact on grace-period latency. This commit therefore updates cpu_needs_another_gp() to invoke rcu_future_needs_gp() instead of rcu_nocb_needs_gp(). The latter is no longer used, so is now removed. This commit also adds tracing for the irq_work_queue() wakeup case. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2014-02-17rcu: Stop tracking FSF's postal addressPaul E. McKenney
All of the RCU source files have the usual GPL header, which contains a long-obsolete postal address for FSF. To avoid the need to track the FSF office's movements, this commit substitutes the URL where GPL may be found. Reported-by: Greg KH <gregkh@linuxfoundation.org> Reported-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2013-12-12rcu: Don't activate RCU core on NO_HZ_FULL CPUsPaul E. McKenney
Whenever a CPU receives a scheduling-clock interrupt, RCU checks to see if the RCU core needs anything from this CPU. If so, RCU raises RCU_SOFTIRQ to carry out any needed processing. This approach has worked well historically, but it is undesirable on NO_HZ_FULL CPUs. Such CPUs are expected to spend almost all of their time in userspace, so that scheduling-clock interrupts can be disabled while there is only one runnable task on the CPU in question. Unfortunately, raising any softirq has the potential to wake up ksoftirqd, which would provide the second runnable task on that CPU, preventing disabling of scheduling-clock interrupts. What is needed instead is for RCU to leave NO_HZ_FULL CPUs alone, relying on the grace-period kthreads' quiescent-state forcing to do any needed RCU work on behalf of those CPUs. This commit therefore refrains from raising RCU_SOFTIRQ on any NO_HZ_FULL CPUs during any grace periods that have been in effect for less than one second. The one-second limit handles the case where an inappropriate workload is running on a NO_HZ_FULL CPU that features lots of scheduling-clock interrupts, but no idle or userspace time. Reported-by: Mike Galbraith <bitbucket@online.de> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Tested-by: Mike Galbraith <bitbucket@online.de> Toasted-by: Frederic Weisbecker <fweisbec@gmail.com>
2013-12-03rcu: Break call_rcu() deadlock involving scheduler and perfPaul E. McKenney
Dave Jones got the following lockdep splat: > ====================================================== > [ INFO: possible circular locking dependency detected ] > 3.12.0-rc3+ #92 Not tainted > ------------------------------------------------------- > trinity-child2/15191 is trying to acquire lock: > (&rdp->nocb_wq){......}, at: [<ffffffff8108ff43>] __wake_up+0x23/0x50 > > but task is already holding lock: > (&ctx->lock){-.-...}, at: [<ffffffff81154c19>] perf_event_exit_task+0x109/0x230 > > which lock already depends on the new lock. > > > the existing dependency chain (in reverse order) is: > > -> #3 (&ctx->lock){-.-...}: > [<ffffffff810cc243>] lock_acquire+0x93/0x200 > [<ffffffff81733f90>] _raw_spin_lock+0x40/0x80 > [<ffffffff811500ff>] __perf_event_task_sched_out+0x2df/0x5e0 > [<ffffffff81091b83>] perf_event_task_sched_out+0x93/0xa0 > [<ffffffff81732052>] __schedule+0x1d2/0xa20 > [<ffffffff81732f30>] preempt_schedule_irq+0x50/0xb0 > [<ffffffff817352b6>] retint_kernel+0x26/0x30 > [<ffffffff813eed04>] tty_flip_buffer_push+0x34/0x50 > [<ffffffff813f0504>] pty_write+0x54/0x60 > [<ffffffff813e900d>] n_tty_write+0x32d/0x4e0 > [<ffffffff813e5838>] tty_write+0x158/0x2d0 > [<ffffffff811c4850>] vfs_write+0xc0/0x1f0 > [<ffffffff811c52cc>] SyS_write+0x4c/0xa0 > [<ffffffff8173d4e4>] tracesys+0xdd/0xe2 > > -> #2 (&rq->lock){-.-.-.}: > [<ffffffff810cc243>] lock_acquire+0x93/0x200 > [<ffffffff81733f90>] _raw_spin_lock+0x40/0x80 > [<ffffffff810980b2>] wake_up_new_task+0xc2/0x2e0 > [<ffffffff81054336>] do_fork+0x126/0x460 > [<ffffffff81054696>] kernel_thread+0x26/0x30 > [<ffffffff8171ff93>] rest_init+0x23/0x140 > [<ffffffff81ee1e4b>] start_kernel+0x3f6/0x403 > [<ffffffff81ee1571>] x86_64_start_reservations+0x2a/0x2c > [<ffffffff81ee1664>] x86_64_start_kernel+0xf1/0xf4 > > -> #1 (&p->pi_lock){-.-.-.}: > [<ffffffff810cc243>] lock_acquire+0x93/0x200 > [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90 > [<ffffffff810979d1>] try_to_wake_up+0x31/0x350 > [<ffffffff81097d62>] default_wake_function+0x12/0x20 > [<ffffffff81084af8>] autoremove_wake_function+0x18/0x40 > [<ffffffff8108ea38>] __wake_up_common+0x58/0x90 > [<ffffffff8108ff59>] __wake_up+0x39/0x50 > [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0 > [<ffffffff81111450>] __call_rcu+0x140/0x820 > [<ffffffff81111b8d>] call_rcu+0x1d/0x20 > [<ffffffff81093697>] cpu_attach_domain+0x287/0x360 > [<ffffffff81099d7e>] build_sched_domains+0xe5e/0x10a0 > [<ffffffff81efa7fc>] sched_init_smp+0x3b7/0x47a > [<ffffffff81ee1f4e>] kernel_init_freeable+0xf6/0x202 > [<ffffffff817200be>] kernel_init+0xe/0x190 > [<ffffffff8173d22c>] ret_from_fork+0x7c/0xb0 > > -> #0 (&rdp->nocb_wq){......}: > [<ffffffff810cb7ca>] __lock_acquire+0x191a/0x1be0 > [<ffffffff810cc243>] lock_acquire+0x93/0x200 > [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90 > [<ffffffff8108ff43>] __wake_up+0x23/0x50 > [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0 > [<ffffffff81111450>] __call_rcu+0x140/0x820 > [<ffffffff81111bb0>] kfree_call_rcu+0x20/0x30 > [<ffffffff81149abf>] put_ctx+0x4f/0x70 > [<ffffffff81154c3e>] perf_event_exit_task+0x12e/0x230 > [<ffffffff81056b8d>] do_exit+0x30d/0xcc0 > [<ffffffff8105893c>] do_group_exit+0x4c/0xc0 > [<ffffffff810589c4>] SyS_exit_group+0x14/0x20 > [<ffffffff8173d4e4>] tracesys+0xdd/0xe2 > > other info that might help us debug this: > > Chain exists of: > &rdp->nocb_wq --> &rq->lock --> &ctx->lock > > Possible unsafe locking scenario: > > CPU0 CPU1 > ---- ---- > lock(&ctx->lock); > lock(&rq->lock); > lock(&ctx->lock); > lock(&rdp->nocb_wq); > > *** DEADLOCK *** > > 1 lock held by trinity-child2/15191: > #0: (&ctx->lock){-.-...}, at: [<ffffffff81154c19>] perf_event_exit_task+0x109/0x230 > > stack backtrace: > CPU: 2 PID: 15191 Comm: trinity-child2 Not tainted 3.12.0-rc3+ #92 > ffffffff82565b70 ffff880070c2dbf8 ffffffff8172a363 ffffffff824edf40 > ffff880070c2dc38 ffffffff81726741 ffff880070c2dc90 ffff88022383b1c0 > ffff88022383aac0 0000000000000000 ffff88022383b188 ffff88022383b1c0 > Call Trace: > [<ffffffff8172a363>] dump_stack+0x4e/0x82 > [<ffffffff81726741>] print_circular_bug+0x200/0x20f > [<ffffffff810cb7ca>] __lock_acquire+0x191a/0x1be0 > [<ffffffff810c6439>] ? get_lock_stats+0x19/0x60 > [<ffffffff8100b2f4>] ? native_sched_clock+0x24/0x80 > [<ffffffff810cc243>] lock_acquire+0x93/0x200 > [<ffffffff8108ff43>] ? __wake_up+0x23/0x50 > [<ffffffff8173419b>] _raw_spin_lock_irqsave+0x4b/0x90 > [<ffffffff8108ff43>] ? __wake_up+0x23/0x50 > [<ffffffff8108ff43>] __wake_up+0x23/0x50 > [<ffffffff8110d4f8>] __call_rcu_nocb_enqueue+0xa8/0xc0 > [<ffffffff81111450>] __call_rcu+0x140/0x820 > [<ffffffff8109bc8f>] ? local_clock+0x3f/0x50 > [<ffffffff81111bb0>] kfree_call_rcu+0x20/0x30 > [<ffffffff81149abf>] put_ctx+0x4f/0x70 > [<ffffffff81154c3e>] perf_event_exit_task+0x12e/0x230 > [<ffffffff81056b8d>] do_exit+0x30d/0xcc0 > [<ffffffff810c9af5>] ? trace_hardirqs_on_caller+0x115/0x1e0 > [<ffffffff810c9bcd>] ? trace_hardirqs_on+0xd/0x10 > [<ffffffff8105893c>] do_group_exit+0x4c/0xc0 > [<ffffffff810589c4>] SyS_exit_group+0x14/0x20 > [<ffffffff8173d4e4>] tracesys+0xdd/0xe2 The underlying problem is that perf is invoking call_rcu() with the scheduler locks held, but in NOCB mode, call_rcu() will with high probability invoke the scheduler -- which just might want to use its locks. The reason that call_rcu() needs to invoke the scheduler is to wake up the corresponding rcuo callback-offload kthread, which does the job of starting up a grace period and invoking the callbacks afterwards. One solution (championed on a related problem by Lai Jiangshan) is to simply defer the wakeup to some point where scheduler locks are no longer held. Since we don't want to unnecessarily incur the cost of such deferral, the task before us is threefold: 1. Determine when it is likely that a relevant scheduler lock is held. 2. Defer the wakeup in such cases. 3. Ensure that all deferred wakeups eventually happen, preferably sooner rather than later. We use irqs_disabled_flags() as a proxy for relevant scheduler locks being held. This works because the relevant locks are always acquired with interrupts disabled. We may defer more often than needed, but that is at least safe. The wakeup deferral is tracked via a new field in the per-CPU and per-RCU-flavor rcu_data structure, namely ->nocb_defer_wakeup. This flag is checked by the RCU core processing. The __rcu_pending() function now checks this flag, which causes rcu_check_callbacks() to initiate RCU core processing at each scheduling-clock interrupt where this flag is set. Of course this is not sufficient because scheduling-clock interrupts are often turned off (the things we used to be able to count on!). So the flags are also checked on entry to any state that RCU considers to be idle, which includes both NO_HZ_IDLE idle state and NO_HZ_FULL user-mode-execution state. This approach should allow call_rcu() to be invoked regardless of what locks you might be holding, the key word being "should". Reported-by: Dave Jones <davej@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org>
2013-12-03rcu: Kick CPU halfway to RCU CPU stall warningPaul E. McKenney
When an RCU CPU stall warning occurs, the CPU invokes resched_cpu() on itself. This can help move the grace period forward in some situations, but it would be even better to do this -before- the RCU CPU stall warning. This commit therefore causes resched_cpu() to be called every five jiffies once the system is halfway to an RCU CPU stall warning. Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2013-10-15rcu: Move RCU-related source code to kernel/rcu directoryPaul E. McKenney
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Ingo Molnar <mingo@kernel.org>