summaryrefslogtreecommitdiffstats
path: root/fs/crypto/fscrypt_private.h
AgeCommit message (Collapse)Author
2020-03-19fscrypt: add FS_IOC_GET_ENCRYPTION_NONCE ioctlEric Biggers
Add an ioctl FS_IOC_GET_ENCRYPTION_NONCE which retrieves the nonce from an encrypted file or directory. The nonce is the 16-byte random value stored in the inode's encryption xattr. It is normally used together with the master key to derive the inode's actual encryption key. The nonces are needed by automated tests that verify the correctness of the ciphertext on-disk. Except for the IV_INO_LBLK_64 case, there's no way to replicate a file's ciphertext without knowing that file's nonce. The nonces aren't secret, and the existing ciphertext verification tests in xfstests retrieve them from disk using debugfs or dump.f2fs. But in environments that lack these debugging tools, getting the nonces by manually parsing the filesystem structure would be very hard. To make this important type of testing much easier, let's just add an ioctl that retrieves the nonce. Link: https://lore.kernel.org/r/20200314205052.93294-2-ebiggers@kernel.org Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-01-22fscrypt: clarify what is meant by a per-file keyEric Biggers
Now that there's sometimes a second type of per-file key (the dirhash key), clarify some function names, macros, and documentation that specifically deal with per-file *encryption* keys. Link: https://lore.kernel.org/r/20200120223201.241390-4-ebiggers@kernel.org Reviewed-by: Daniel Rosenberg <drosen@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-01-22fscrypt: derive dirhash key for casefolded directoriesDaniel Rosenberg
When we allow indexed directories to use both encryption and casefolding, for the dirhash we can't just hash the ciphertext filenames that are stored on-disk (as is done currently) because the dirhash must be case insensitive, but the stored names are case-preserving. Nor can we hash the plaintext names with an unkeyed hash (or a hash keyed with a value stored on-disk like ext4's s_hash_seed), since that would leak information about the names that encryption is meant to protect. Instead, if we can accept a dirhash that's only computable when the fscrypt key is available, we can hash the plaintext names with a keyed hash using a secret key derived from the directory's fscrypt master key. We'll use SipHash-2-4 for this purpose. Prepare for this by deriving a SipHash key for each casefolded encrypted directory. Make sure to handle deriving the key not only when setting up the directory's fscrypt_info, but also in the case where the casefold flag is enabled after the fscrypt_info was already set up. (We could just always derive the key regardless of casefolding, but that would introduce unnecessary overhead for people not using casefolding.) Signed-off-by: Daniel Rosenberg <drosen@google.com> [EB: improved commit message, updated fscrypt.rst, squashed with change that avoids unnecessarily deriving the key, and many other cleanups] Link: https://lore.kernel.org/r/20200120223201.241390-3-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2020-01-22fscrypt: add "fscrypt_" prefix to fname_encrypt()Eric Biggers
fname_encrypt() is a global function, due to being used in both fname.c and hooks.c. So it should be prefixed with "fscrypt_", like all the other global functions in fs/crypto/. Link: https://lore.kernel.org/r/20200120071736.45915-1-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-12-31fscrypt: remove fscrypt_is_direct_key_policy()Eric Biggers
fscrypt_is_direct_key_policy() is no longer used, so remove it. Link: https://lore.kernel.org/r/20191209211829.239800-5-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-12-31fscrypt: move fscrypt_valid_enc_modes() to policy.cEric Biggers
fscrypt_valid_enc_modes() is only used by policy.c, so move it to there. Also adjust the order of the checks to be more natural, matching the numerical order of the constants and also keeping AES-256 (the recommended default) first in the list. No change in behavior. Link: https://lore.kernel.org/r/20191209211829.239800-4-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-12-31fscrypt: check for appropriate use of DIRECT_KEY flag earlierEric Biggers
FSCRYPT_POLICY_FLAG_DIRECT_KEY is currently only allowed with Adiantum encryption. But FS_IOC_SET_ENCRYPTION_POLICY allowed it in combination with other encryption modes, and an error wasn't reported until later when the encrypted directory was actually used. Fix it to report the error earlier by validating the correct use of the DIRECT_KEY flag in fscrypt_supported_policy(), similar to how we validate the IV_INO_LBLK_64 flag. Link: https://lore.kernel.org/r/20191209211829.239800-3-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-12-31fscrypt: move fscrypt_d_revalidate() to fname.cEric Biggers
fscrypt_d_revalidate() and fscrypt_d_ops really belong in fname.c, since they're specific to filenames encryption. crypto.c is for contents encryption and general fs/crypto/ initialization and utilities. Link: https://lore.kernel.org/r/20191209204359.228544-1-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-12-31fscrypt: constify inode parameter to filename encryption functionsEric Biggers
Constify the struct inode parameter to fscrypt_fname_disk_to_usr() and the other filename encryption functions so that users don't have to pass in a non-const inode when they are dealing with a const one, as in [1]. [1] https://lkml.kernel.org/linux-ext4/20191203051049.44573-6-drosen@google.com/ Cc: Daniel Rosenberg <drosen@google.com> Link: https://lore.kernel.org/r/20191215213947.9521-1-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-12-31fscrypt: constify struct fscrypt_hkdf parameter to fscrypt_hkdf_expand()Eric Biggers
Constify the struct fscrypt_hkdf parameter to fscrypt_hkdf_expand(). This makes it clearer that struct fscrypt_hkdf contains the key only, not any per-request state. Link: https://lore.kernel.org/r/20191209204054.227736-1-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-11-06fscrypt: add support for IV_INO_LBLK_64 policiesEric Biggers
Inline encryption hardware compliant with the UFS v2.1 standard or with the upcoming version of the eMMC standard has the following properties: (1) Per I/O request, the encryption key is specified by a previously loaded keyslot. There might be only a small number of keyslots. (2) Per I/O request, the starting IV is specified by a 64-bit "data unit number" (DUN). IV bits 64-127 are assumed to be 0. The hardware automatically increments the DUN for each "data unit" of configurable size in the request, e.g. for each filesystem block. Property (1) makes it inefficient to use the traditional fscrypt per-file keys. Property (2) precludes the use of the existing DIRECT_KEY fscrypt policy flag, which needs at least 192 IV bits. Therefore, add a new fscrypt policy flag IV_INO_LBLK_64 which causes the encryption to modified as follows: - The encryption keys are derived from the master key, encryption mode number, and filesystem UUID. - The IVs are chosen as (inode_number << 32) | file_logical_block_num. For filenames encryption, file_logical_block_num is 0. Since the file nonces aren't used in the key derivation, many files may share the same encryption key. This is much more efficient on the target hardware. Including the inode number in the IVs and mixing the filesystem UUID into the keys ensures that data in different files is nevertheless still encrypted differently. Additionally, limiting the inode and block numbers to 32 bits and placing the block number in the low bits maintains compatibility with the 64-bit DUN convention (property (2) above). Since this scheme assumes that inode numbers are stable (which may preclude filesystem shrinking) and that inode and file logical block numbers are at most 32-bit, IV_INO_LBLK_64 will only be allowed on filesystems that meet these constraints. These are acceptable limitations for the cases where this format would actually be used. Note that IV_INO_LBLK_64 is an on-disk format, not an implementation. This patch just adds support for it using the existing filesystem layer encryption. A later patch will add support for inline encryption. Reviewed-by: Paul Crowley <paulcrowley@google.com> Co-developed-by: Satya Tangirala <satyat@google.com> Signed-off-by: Satya Tangirala <satyat@google.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-11-06fscrypt: avoid data race on fscrypt_mode::logged_impl_nameEric Biggers
The access to logged_impl_name is technically a data race, which tools like KCSAN could complain about in the future. See: https://github.com/google/ktsan/wiki/READ_ONCE-and-WRITE_ONCE Fix by using xchg(), which also ensures that only one thread does the logging. This also required switching from bool to int, to avoid a build error on the RISC-V architecture which doesn't implement xchg on bytes. Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-10-21fscrypt: remove struct fscrypt_ctxEric Biggers
Now that ext4 and f2fs implement their own post-read workflow that supports both fscrypt and fsverity, the fscrypt-only workflow based around struct fscrypt_ctx is no longer used. So remove the unused code. This is based on a patch from Chandan Rajendra's "Consolidate FS read I/O callbacks code" patchset, but rebased onto the latest kernel, folded __fscrypt_decrypt_bio() into fscrypt_decrypt_bio(), cleaned up fscrypt_initialize(), and updated the commit message. Originally-from: Chandan Rajendra <chandan@linux.ibm.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-10-21fscrypt: invoke crypto API for ESSIV handlingEric Biggers
Instead of open-coding the calculations for ESSIV handling, use an ESSIV skcipher which does all of this under the hood. ESSIV was added to the crypto API in v5.4. This is based on a patch from Ard Biesheuvel, but reworked to apply after all the fscrypt changes that went into v5.4. Tested with 'kvm-xfstests -c ext4,f2fs -g encrypt', including the ciphertext verification tests for v1 and v2 encryption policies. Originally-from: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12fscrypt: require that key be added when setting a v2 encryption policyEric Biggers
By looking up the master keys in a filesystem-level keyring rather than in the calling processes' key hierarchy, it becomes possible for a user to set an encryption policy which refers to some key they don't actually know, then encrypt their files using that key. Cryptographically this isn't much of a problem, but the semantics of this would be a bit weird. Thus, enforce that a v2 encryption policy can only be set if the user has previously added the key, or has capable(CAP_FOWNER). We tolerate that this problem will continue to exist for v1 encryption policies, however; there is no way around that. Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12fscrypt: allow unprivileged users to add/remove keys for v2 policiesEric Biggers
Allow the FS_IOC_ADD_ENCRYPTION_KEY and FS_IOC_REMOVE_ENCRYPTION_KEY ioctls to be used by non-root users to add and remove encryption keys from the filesystem-level crypto keyrings, subject to limitations. Motivation: while privileged fscrypt key management is sufficient for some users (e.g. Android and Chromium OS, where a privileged process manages all keys), the old API by design also allows non-root users to set up and use encrypted directories, and we don't want to regress on that. Especially, we don't want to force users to continue using the old API, running into the visibility mismatch between files and keyrings and being unable to "lock" encrypted directories. Intuitively, the ioctls have to be privileged since they manipulate filesystem-level state. However, it's actually safe to make them unprivileged if we very carefully enforce some specific limitations. First, each key must be identified by a cryptographic hash so that a user can't add the wrong key for another user's files. For v2 encryption policies, we use the key_identifier for this. v1 policies don't have this, so managing keys for them remains privileged. Second, each key a user adds is charged to their quota for the keyrings service. Thus, a user can't exhaust memory by adding a huge number of keys. By default each non-root user is allowed up to 200 keys; this can be changed using the existing sysctl 'kernel.keys.maxkeys'. Third, if multiple users add the same key, we keep track of those users of the key (of which there remains a single copy), and won't really remove the key, i.e. "lock" the encrypted files, until all those users have removed it. This prevents denial of service attacks that would be possible under simpler schemes, such allowing the first user who added a key to remove it -- since that could be a malicious user who has compromised the key. Of course, encryption keys should be kept secret, but the idea is that using encryption should never be *less* secure than not using encryption, even if your key was compromised. We tolerate that a user will be unable to really remove a key, i.e. unable to "lock" their encrypted files, if another user has added the same key. But in a sense, this is actually a good thing because it will avoid providing a false notion of security where a key appears to have been removed when actually it's still in memory, available to any attacker who compromises the operating system kernel. Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12fscrypt: v2 encryption policy supportEric Biggers
Add a new fscrypt policy version, "v2". It has the following changes from the original policy version, which we call "v1" (*): - Master keys (the user-provided encryption keys) are only ever used as input to HKDF-SHA512. This is more flexible and less error-prone, and it avoids the quirks and limitations of the AES-128-ECB based KDF. Three classes of cryptographically isolated subkeys are defined: - Per-file keys, like used in v1 policies except for the new KDF. - Per-mode keys. These implement the semantics of the DIRECT_KEY flag, which for v1 policies made the master key be used directly. These are also planned to be used for inline encryption when support for it is added. - Key identifiers (see below). - Each master key is identified by a 16-byte master_key_identifier, which is derived from the key itself using HKDF-SHA512. This prevents users from associating the wrong key with an encrypted file or directory. This was easily possible with v1 policies, which identified the key by an arbitrary 8-byte master_key_descriptor. - The key must be provided in the filesystem-level keyring, not in a process-subscribed keyring. The following UAPI additions are made: - The existing ioctl FS_IOC_SET_ENCRYPTION_POLICY can now be passed a fscrypt_policy_v2 to set a v2 encryption policy. It's disambiguated from fscrypt_policy/fscrypt_policy_v1 by the version code prefix. - A new ioctl FS_IOC_GET_ENCRYPTION_POLICY_EX is added. It allows getting the v1 or v2 encryption policy of an encrypted file or directory. The existing FS_IOC_GET_ENCRYPTION_POLICY ioctl could not be used because it did not have a way for userspace to indicate which policy structure is expected. The new ioctl includes a size field, so it is extensible to future fscrypt policy versions. - The ioctls FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY, and FS_IOC_GET_ENCRYPTION_KEY_STATUS now support managing keys for v2 encryption policies. Such keys are kept logically separate from keys for v1 encryption policies, and are identified by 'identifier' rather than by 'descriptor'. The 'identifier' need not be provided when adding a key, since the kernel will calculate it anyway. This patch temporarily keeps adding/removing v2 policy keys behind the same permission check done for adding/removing v1 policy keys: capable(CAP_SYS_ADMIN). However, the next patch will carefully take advantage of the cryptographically secure master_key_identifier to allow non-root users to add/remove v2 policy keys, thus providing a full replacement for v1 policies. (*) Actually, in the API fscrypt_policy::version is 0 while on-disk fscrypt_context::format is 1. But I believe it makes the most sense to advance both to '2' to have them be in sync, and to consider the numbering to start at 1 except for the API quirk. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12fscrypt: add an HKDF-SHA512 implementationEric Biggers
Add an implementation of HKDF (RFC 5869) to fscrypt, for the purpose of deriving additional key material from the fscrypt master keys for v2 encryption policies. HKDF is a key derivation function built on top of HMAC. We choose SHA-512 for the underlying unkeyed hash, and use an "hmac(sha512)" transform allocated from the crypto API. We'll be using this to replace the AES-ECB based KDF currently used to derive the per-file encryption keys. While the AES-ECB based KDF is believed to meet the original security requirements, it is nonstandard and has problems that don't exist in modern KDFs such as HKDF: 1. It's reversible. Given a derived key and nonce, an attacker can easily compute the master key. This is okay if the master key and derived keys are equally hard to compromise, but now we'd like to be more robust against threats such as a derived key being compromised through a timing attack, or a derived key for an in-use file being compromised after the master key has already been removed. 2. It doesn't evenly distribute the entropy from the master key; each 16 input bytes only affects the corresponding 16 output bytes. 3. It isn't easily extensible to deriving other values or keys, such as a public hash for securely identifying the key, or per-mode keys. Per-mode keys will be immediately useful for Adiantum encryption, for which fscrypt currently uses the master key directly, introducing unnecessary usage constraints. Per-mode keys will also be useful for hardware inline encryption, which is currently being worked on. HKDF solves all the above problems. Reviewed-by: Paul Crowley <paulcrowley@google.com> Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12fscrypt: add FS_IOC_REMOVE_ENCRYPTION_KEY ioctlEric Biggers
Add a new fscrypt ioctl, FS_IOC_REMOVE_ENCRYPTION_KEY. This ioctl removes an encryption key that was added by FS_IOC_ADD_ENCRYPTION_KEY. It wipes the secret key itself, then "locks" the encrypted files and directories that had been unlocked using that key -- implemented by evicting the relevant dentries and inodes from the VFS caches. The problem this solves is that many fscrypt users want the ability to remove encryption keys, causing the corresponding encrypted directories to appear "locked" (presented in ciphertext form) again. Moreover, users want removing an encryption key to *really* remove it, in the sense that the removed keys cannot be recovered even if kernel memory is compromised, e.g. by the exploit of a kernel security vulnerability or by a physical attack. This is desirable after a user logs out of the system, for example. In many cases users even already assume this to be the case and are surprised to hear when it's not. It is not sufficient to simply unlink the master key from the keyring (or to revoke or invalidate it), since the actual encryption transform objects are still pinned in memory by their inodes. Therefore, to really remove a key we must also evict the relevant inodes. Currently one workaround is to run 'sync && echo 2 > /proc/sys/vm/drop_caches'. But, that evicts all unused inodes in the system rather than just the inodes associated with the key being removed, causing severe performance problems. Moreover, it requires root privileges, so regular users can't "lock" their encrypted files. Another workaround, used in Chromium OS kernels, is to add a new VFS-level ioctl FS_IOC_DROP_CACHE which is a more restricted version of drop_caches that operates on a single super_block. It does: shrink_dcache_sb(sb); invalidate_inodes(sb, false); But it's still a hack. Yet, the major users of filesystem encryption want this feature badly enough that they are actually using these hacks. To properly solve the problem, start maintaining a list of the inodes which have been "unlocked" using each master key. Originally this wasn't possible because the kernel didn't keep track of in-use master keys at all. But, with the ->s_master_keys keyring it is now possible. Then, add an ioctl FS_IOC_REMOVE_ENCRYPTION_KEY. It finds the specified master key in ->s_master_keys, then wipes the secret key itself, which prevents any additional inodes from being unlocked with the key. Then, it syncs the filesystem and evicts the inodes in the key's list. The normal inode eviction code will free and wipe the per-file keys (in ->i_crypt_info). Note that freeing ->i_crypt_info without evicting the inodes was also considered, but would have been racy. Some inodes may still be in use when a master key is removed, and we can't simply revoke random file descriptors, mmap's, etc. Thus, the ioctl simply skips in-use inodes, and returns -EBUSY to indicate that some inodes weren't evicted. The master key *secret* is still removed, but the fscrypt_master_key struct remains to keep track of the remaining inodes. Userspace can then retry the ioctl to evict the remaining inodes. Alternatively, if userspace adds the key again, the refreshed secret will be associated with the existing list of inodes so they remain correctly tracked for future key removals. The ioctl doesn't wipe pagecache pages. Thus, we tolerate that after a kernel compromise some portions of plaintext file contents may still be recoverable from memory. This can be solved by enabling page poisoning system-wide, which security conscious users may choose to do. But it's very difficult to solve otherwise, e.g. note that plaintext file contents may have been read in other places than pagecache pages. Like FS_IOC_ADD_ENCRYPTION_KEY, FS_IOC_REMOVE_ENCRYPTION_KEY is initially restricted to privileged users only. This is sufficient for some use cases, but not all. A later patch will relax this restriction, but it will require introducing key hashes, among other changes. Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12fscrypt: add FS_IOC_ADD_ENCRYPTION_KEY ioctlEric Biggers
Add a new fscrypt ioctl, FS_IOC_ADD_ENCRYPTION_KEY. This ioctl adds an encryption key to the filesystem's fscrypt keyring ->s_master_keys, making any files encrypted with that key appear "unlocked". Why we need this ~~~~~~~~~~~~~~~~ The main problem is that the "locked/unlocked" (ciphertext/plaintext) status of encrypted files is global, but the fscrypt keys are not. fscrypt only looks for keys in the keyring(s) the process accessing the filesystem is subscribed to: the thread keyring, process keyring, and session keyring, where the session keyring may contain the user keyring. Therefore, userspace has to put fscrypt keys in the keyrings for individual users or sessions. But this means that when a process with a different keyring tries to access encrypted files, whether they appear "unlocked" or not is nondeterministic. This is because it depends on whether the files are currently present in the inode cache. Fixing this by consistently providing each process its own view of the filesystem depending on whether it has the key or not isn't feasible due to how the VFS caches work. Furthermore, while sometimes users expect this behavior, it is misguided for two reasons. First, it would be an OS-level access control mechanism largely redundant with existing access control mechanisms such as UNIX file permissions, ACLs, LSMs, etc. Encryption is actually for protecting the data at rest. Second, almost all users of fscrypt actually do need the keys to be global. The largest users of fscrypt, Android and Chromium OS, achieve this by having PID 1 create a "session keyring" that is inherited by every process. This works, but it isn't scalable because it prevents session keyrings from being used for any other purpose. On general-purpose Linux distros, the 'fscrypt' userspace tool [1] can't similarly abuse the session keyring, so to make 'sudo' work on all systems it has to link all the user keyrings into root's user keyring [2]. This is ugly and raises security concerns. Moreover it can't make the keys available to system services, such as sshd trying to access the user's '~/.ssh' directory (see [3], [4]) or NetworkManager trying to read certificates from the user's home directory (see [5]); or to Docker containers (see [6], [7]). By having an API to add a key to the *filesystem* we'll be able to fix the above bugs, remove userspace workarounds, and clearly express the intended semantics: the locked/unlocked status of an encrypted directory is global, and encryption is orthogonal to OS-level access control. Why not use the add_key() syscall ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We use an ioctl for this API rather than the existing add_key() system call because the ioctl gives us the flexibility needed to implement fscrypt-specific semantics that will be introduced in later patches: - Supporting key removal with the semantics such that the secret is removed immediately and any unused inodes using the key are evicted; also, the eviction of any in-use inodes can be retried. - Calculating a key-dependent cryptographic identifier and returning it to userspace. - Allowing keys to be added and removed by non-root users, but only keys for v2 encryption policies; and to prevent denial-of-service attacks, users can only remove keys they themselves have added, and a key is only really removed after all users who added it have removed it. Trying to shoehorn these semantics into the keyrings syscalls would be very difficult, whereas the ioctls make things much easier. However, to reuse code the implementation still uses the keyrings service internally. Thus we get lockless RCU-mode key lookups without having to re-implement it, and the keys automatically show up in /proc/keys for debugging purposes. References: [1] https://github.com/google/fscrypt [2] https://goo.gl/55cCrI#heading=h.vf09isp98isb [3] https://github.com/google/fscrypt/issues/111#issuecomment-444347939 [4] https://github.com/google/fscrypt/issues/116 [5] https://bugs.launchpad.net/ubuntu/+source/fscrypt/+bug/1770715 [6] https://github.com/google/fscrypt/issues/128 [7] https://askubuntu.com/questions/1130306/cannot-run-docker-on-an-encrypted-filesystem Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12fscrypt: rename keyinfo.c to keysetup.cEric Biggers
Rename keyinfo.c to keysetup.c since this better describes what the file does (sets up the key), and it matches the new file keysetup_v1.c. Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12fscrypt: move v1 policy key setup to keysetup_v1.cEric Biggers
In preparation for introducing v2 encryption policies which will find and derive encryption keys differently from the current v1 encryption policies, move the v1 policy-specific key setup code from keyinfo.c into keysetup_v1.c. Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12fscrypt: refactor key setup code in preparation for v2 policiesEric Biggers
Do some more refactoring of the key setup code, in preparation for introducing a filesystem-level keyring and v2 encryption policies: - Now that ci_inode exists, don't pass around the inode unnecessarily. - Define a function setup_file_encryption_key() which handles the crypto key setup given an under-construction fscrypt_info. Don't pass the fscrypt_context, since everything is in the fscrypt_info. [This will be extended for v2 policies and the fs-level keyring.] - Define a function fscrypt_set_derived_key() which sets the per-file key, without depending on anything specific to v1 policies. [This will also be used for v2 policies.] - Define a function fscrypt_setup_v1_file_key() which takes the raw master key, thus separating finding the key from using it. [This will also be used if the key is found in the fs-level keyring.] Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12fscrypt: rename fscrypt_master_key to fscrypt_direct_keyEric Biggers
In preparation for introducing a filesystem-level keyring which will contain fscrypt master keys, rename the existing 'struct fscrypt_master_key' to 'struct fscrypt_direct_key'. This is the structure in the existing table of master keys that's maintained to deduplicate the crypto transforms for v1 DIRECT_KEY policies. I've chosen to keep this table as-is rather than make it automagically add/remove the keys to/from the filesystem-level keyring, since that would add a lot of extra complexity to the filesystem-level keyring. Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12fscrypt: add ->ci_inode to fscrypt_infoEric Biggers
Add an inode back-pointer to 'struct fscrypt_info', such that inode->i_crypt_info->ci_inode == inode. This will be useful for: 1. Evicting the inodes when a fscrypt key is removed, since we'll track the inodes using a given key by linking their fscrypt_infos together, rather than the inodes directly. This avoids bloating 'struct inode' with a new list_head. 2. Simplifying the per-file key setup, since the inode pointer won't have to be passed around everywhere just in case something goes wrong and it's needed for fscrypt_warn(). Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12fscrypt: use FSCRYPT_* definitions, not FS_*Eric Biggers
Update fs/crypto/ to use the new names for the UAPI constants rather than the old names, then make the old definitions conditional on !__KERNEL__. Reviewed-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12fscrypt: make fscrypt_msg() take inode instead of super_blockEric Biggers
Most of the warning and error messages in fs/crypto/ are for situations related to a specific inode, not merely to a super_block. So to make things easier, make fscrypt_msg() take an inode rather than a super_block, and make it print the inode number. Note: This is the same approach I'm taking for fsverity_msg(). Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-08-12fscrypt: remove loadable module related codeEric Biggers
Since commit 643fa9612bf1 ("fscrypt: remove filesystem specific build config option"), fs/crypto/ can no longer be built as a loadable module. Thus it no longer needs a module_exit function, nor a MODULE_LICENSE. So remove them, and change module_init to late_initcall. Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-05-28fscrypt: rename fscrypt_do_page_crypto() to fscrypt_crypt_block()Eric Biggers
fscrypt_do_page_crypto() only does a single encryption or decryption operation, with a single logical block number (single IV). So it actually operates on a filesystem block, not a "page" per se. To reflect this, rename it to fscrypt_crypt_block(). Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-05-28fscrypt: simplify bounce page handlingEric Biggers
Currently, bounce page handling for writes to encrypted files is unnecessarily complicated. A fscrypt_ctx is allocated along with each bounce page, page_private(bounce_page) points to this fscrypt_ctx, and fscrypt_ctx::w::control_page points to the original pagecache page. However, because writes don't use the fscrypt_ctx for anything else, there's no reason why page_private(bounce_page) can't just point to the original pagecache page directly. Therefore, this patch makes this change. In the process, it also cleans up the API exposed to filesystems that allows testing whether a page is a bounce page, getting the pagecache page from a bounce page, and freeing a bounce page. Reviewed-by: Chandan Rajendra <chandan@linux.ibm.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-01-23fscrypt: remove filesystem specific build config optionChandan Rajendra
In order to have a common code base for fscrypt "post read" processing for all filesystems which support encryption, this commit removes filesystem specific build config option (e.g. CONFIG_EXT4_FS_ENCRYPTION) and replaces it with a build option (i.e. CONFIG_FS_ENCRYPTION) whose value affects all the filesystems making use of fscrypt. Reviewed-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Chandan Rajendra <chandan@linux.vnet.ibm.com> Signed-off-by: Eric Biggers <ebiggers@google.com>
2019-01-06fscrypt: add Adiantum supportEric Biggers
Add support for the Adiantum encryption mode to fscrypt. Adiantum is a tweakable, length-preserving encryption mode with security provably reducible to that of XChaCha12 and AES-256, subject to a security bound. It's also a true wide-block mode, unlike XTS. See the paper "Adiantum: length-preserving encryption for entry-level processors" (https://eprint.iacr.org/2018/720.pdf) for more details. Also see commit 059c2a4d8e16 ("crypto: adiantum - add Adiantum support"). On sufficiently long messages, Adiantum's bottlenecks are XChaCha12 and the NH hash function. These algorithms are fast even on processors without dedicated crypto instructions. Adiantum makes it feasible to enable storage encryption on low-end mobile devices that lack AES instructions; currently such devices are unencrypted. On ARM Cortex-A7, on 4096-byte messages Adiantum encryption is about 4 times faster than AES-256-XTS encryption; decryption is about 5 times faster. In fscrypt, Adiantum is suitable for encrypting both file contents and names. With filenames, it fixes a known weakness: when two filenames in a directory share a common prefix of >= 16 bytes, with CTS-CBC their encrypted filenames share a common prefix too, leaking information. Adiantum does not have this problem. Since Adiantum also accepts long tweaks (IVs), it's also safe to use the master key directly for Adiantum encryption rather than deriving per-file keys, provided that the per-file nonce is included in the IVs and the master key isn't used for any other encryption mode. This configuration saves memory and improves performance. A new fscrypt policy flag is added to allow users to opt-in to this configuration. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2018-09-04crypto: speck - remove SpeckJason A. Donenfeld
These are unused, undesired, and have never actually been used by anybody. The original authors of this code have changed their mind about its inclusion. While originally proposed for disk encryption on low-end devices, the idea was discarded [1] in favor of something else before that could really get going. Therefore, this patch removes Speck. [1] https://marc.info/?l=linux-crypto-vger&m=153359499015659 Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Acked-by: Eric Biggers <ebiggers@google.com> Cc: stable@vger.kernel.org Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-06-11Merge tag 'f2fs-for-4.18' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs Pull f2fs updates from Jaegeuk Kim: "In this round, we've mainly focused on discard, aka unmap, control along with fstrim for Android-specific usage model. In addition, we've fixed writepage flow which returned EAGAIN previously resulting in EIO of fsync(2) due to mapping's error state. In order to avoid old MM bug [1], we decided not to use __GFP_ZERO for the mapping for node and meta page caches. As always, we've cleaned up many places for future fsverity and symbol conflicts. Enhancements: - do discard/fstrim in lower priority considering fs utilization - split large discard commands into smaller ones for better responsiveness - add more sanity checks to address syzbot reports - add a mount option, fsync_mode=nobarrier, which can reduce # of cache flushes - clean up symbol namespace with modified function names - be strict on block allocation and IO control in corner cases Bug fixes: - don't use __GFP_ZERO for mappings - fix error reports in writepage to avoid fsync() failure - avoid selinux denial on CAP_RESOURCE on resgid/resuid - fix some subtle race conditions in GC/atomic writes/shutdown - fix overflow bugs in sanity_check_raw_super - fix missing bits on get_flags Clean-ups: - prepare the generic flow for future fsverity integration - fix some broken coding standard" [1] https://lkml.org/lkml/2018/4/8/661 * tag 'f2fs-for-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs: (79 commits) f2fs: fix to clear FI_VOLATILE_FILE correctly f2fs: let sync node IO interrupt async one f2fs: don't change wbc->sync_mode f2fs: fix to update mtime correctly fs: f2fs: insert space around that ':' and ', ' fs: f2fs: add missing blank lines after declarations fs: f2fs: changed variable type of offset "unsigned" to "loff_t" f2fs: clean up symbol namespace f2fs: make set_de_type() static f2fs: make __f2fs_write_data_pages() static f2fs: fix to avoid accessing cross the boundary f2fs: fix to let caller retry allocating block address disable loading f2fs module on PAGE_SIZE > 4KB f2fs: fix error path of move_data_page f2fs: don't drop dentry pages after fs shutdown f2fs: fix to avoid race during access gc_thread pointer f2fs: clean up with clear_radix_tree_dirty_tag f2fs: fix to don't trigger writeback during recovery f2fs: clear discard_wake earlier f2fs: let discard thread wait a little longer if dev is busy ...
2018-05-20fscrypt: add Speck128/256 supportEric Biggers
fscrypt currently only supports AES encryption. However, many low-end mobile devices have older CPUs that don't have AES instructions, e.g. the ARMv8 Cryptography Extensions. Currently, user data on such devices is not encrypted at rest because AES is too slow, even when the NEON bit-sliced implementation of AES is used. Unfortunately, it is infeasible to encrypt these devices at all when AES is the only option. Therefore, this patch updates fscrypt to support the Speck block cipher, which was recently added to the crypto API. The C implementation of Speck is not especially fast, but Speck can be implemented very efficiently with general-purpose vector instructions, e.g. ARM NEON. For example, on an ARMv7 processor, we measured the NEON-accelerated Speck128/256-XTS at 69 MB/s for both encryption and decryption, while AES-256-XTS with the NEON bit-sliced implementation was only 22 MB/s encryption and 19 MB/s decryption. There are multiple variants of Speck. This patch only adds support for Speck128/256, which is the variant with a 128-bit block size and 256-bit key size -- the same as AES-256. This is believed to be the most secure variant of Speck, and it's only about 6% slower than Speck128/128. Speck64/128 would be at least 20% faster because it has 20% rounds, and it can be even faster on CPUs that can't efficiently do the 64-bit operations needed for Speck128. However, Speck64's 64-bit block size is not preferred security-wise. ARM NEON also supports the needed 64-bit operations even on 32-bit CPUs, resulting in Speck128 being fast enough for our targeted use cases so far. The chosen modes of operation are XTS for contents and CTS-CBC for filenames. These are the same modes of operation that fscrypt defaults to for AES. Note that as with the other fscrypt modes, Speck will not be used unless userspace chooses to use it. Nor are any of the existing modes (which are all AES-based) being removed, of course. We intentionally don't make CONFIG_FS_ENCRYPTION select CONFIG_CRYPTO_SPECK, so people will have to enable Speck support themselves if they need it. This is because we shouldn't bloat the FS_ENCRYPTION dependencies with every new cipher, especially ones that aren't recommended for most users. Moreover, CRYPTO_SPECK is just the generic implementation, which won't be fast enough for many users; in practice, they'll need to enable CRYPTO_SPECK_NEON to get acceptable performance. More details about our choice of Speck can be found in our patches that added Speck to the crypto API, and the follow-on discussion threads. We're planning a publication that explains the choice in more detail. But briefly, we can't use ChaCha20 as we previously proposed, since it would be insecure to use a stream cipher in this context, with potential IV reuse during writes on f2fs and/or on wear-leveling flash storage. We also evaluated many other lightweight and/or ARX-based block ciphers such as Chaskey-LTS, RC5, LEA, CHAM, Threefish, RC6, NOEKEON, SPARX, and XTEA. However, all had disadvantages vs. Speck, such as insufficient performance with NEON, much less published cryptanalysis, or an insufficient security level. Various design choices in Speck make it perform better with NEON than competing ciphers while still having a security margin similar to AES, and in the case of Speck128 also the same available security levels. Unfortunately, Speck does have some political baggage attached -- it's an NSA designed cipher, and was rejected from an ISO standard (though for context, as far as I know none of the above-mentioned alternatives are ISO standards either). Nevertheless, we believe it is a good solution to the problem from a technical perspective. Certain algorithms constructed from ChaCha or the ChaCha permutation, such as MEM (Masked Even-Mansour) or HPolyC, may also meet our performance requirements. However, these are new constructions that need more time to receive the cryptographic review and acceptance needed to be confident in their security. HPolyC hasn't been published yet, and we are concerned that MEM makes stronger assumptions about the underlying permutation than the ChaCha stream cipher does. In contrast, the XTS mode of operation is relatively well accepted, and Speck has over 70 cryptanalysis papers. Of course, these ChaCha-based algorithms can still be added later if they become ready. The best known attack on Speck128/256 is a differential cryptanalysis attack on 25 of 34 rounds with 2^253 time complexity and 2^125 chosen plaintexts, i.e. only marginally faster than brute force. There is no known attack on the full 34 rounds. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2018-05-20fscrypt: use a common logging functionEric Biggers
Use a common function for fscrypt warning and error messages so that all the messages are consistently ratelimited, include the "fscrypt:" prefix, and include the filesystem name if applicable. Also fix up a few of the log messages to be more descriptive. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2018-05-20fscrypt: remove internal key size constantsEric Biggers
With one exception, the internal key size constants such as FS_AES_256_XTS_KEY_SIZE are only used for the 'available_modes' array, where they really only serve to obfuscate what the values are. Also some of the constants are unused, and the key sizes tend to be in the names of the algorithms anyway. In the past these values were also misused, e.g. we used to have FS_AES_256_XTS_KEY_SIZE in places that technically should have been FS_MAX_KEY_SIZE. The exception is that FS_AES_128_ECB_KEY_SIZE is used for key derivation. But it's more appropriate to use FS_KEY_DERIVATION_NONCE_SIZE for that instead. Thus, just put the sizes directly in the 'available_modes' array. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2018-05-20fscrypt: clean up after fscrypt_prepare_lookup() conversionsEric Biggers
Now that all filesystems have been converted to use fscrypt_prepare_lookup(), we can remove the fscrypt_set_d_op() and fscrypt_set_encrypted_dentry() functions as well as un-export fscrypt_d_ops. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2018-05-02fscrypt: allow synchronous bio decryptionEric Biggers
Currently, fscrypt provides fscrypt_decrypt_bio_pages() which decrypts a bio's pages asynchronously, then unlocks them afterwards. But, this assumes that decryption is the last "postprocessing step" for the bio, so it's incompatible with additional postprocessing steps such as authenticity verification after decryption. Therefore, rename the existing fscrypt_decrypt_bio_pages() to fscrypt_enqueue_decrypt_bio(). Then, add fscrypt_decrypt_bio() which decrypts the pages in the bio synchronously without unlocking the pages, nor setting them Uptodate; and add fscrypt_enqueue_decrypt_work(), which enqueues work on the fscrypt_read_workqueue. The new functions will be used by filesystems that support both fscrypt and fs-verity. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2018-01-11fscrypt: fix up fscrypt_fname_encrypted_size() for internal useEric Biggers
Filesystems don't need fscrypt_fname_encrypted_size() anymore, so unexport it and move it to fscrypt_private.h. We also never calculate the encrypted size of a filename without having the fscrypt_info present since it is needed to know the amount of NUL-padding which is determined by the encryption policy, and also we will always truncate the NUL-padding to the maximum filename length. Therefore, also make fscrypt_fname_encrypted_size() assume that the fscrypt_info is present, and make it truncate the returned length to the specified max_len. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2018-01-11fscrypt: calculate NUL-padding length in one place onlyEric Biggers
Currently, when encrypting a filename (either a real filename or a symlink target) we calculate the amount of NUL-padding twice: once before encryption and once during encryption in fname_encrypt(). It is needed before encryption to allocate the needed buffer size as well as calculate the size the symlink target will take up on-disk before creating the symlink inode. Calculating the size during encryption as well is redundant. Remove this redundancy by always calculating the exact size beforehand, and making fname_encrypt() just add as much NUL padding as is needed to fill the output buffer. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2018-01-11fscrypt: move fscrypt_symlink_data to fscrypt_private.hEric Biggers
Now that all filesystems have been converted to use the symlink helper functions, they no longer need the declaration of 'struct fscrypt_symlink_data'. Move it from fscrypt.h to fscrypt_private.h. Signed-off-by: Eric Biggers <ebiggers@google.com> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2018-01-11fscrypt: new helper functions for ->symlink()Eric Biggers
Currently, filesystems supporting fscrypt need to implement some tricky logic when creating encrypted symlinks, including handling a peculiar on-disk format (struct fscrypt_symlink_data) and correctly calculating the size of the encrypted symlink. Introduce helper functions to make things a bit easier: - fscrypt_prepare_symlink() computes and validates the size the symlink target will require on-disk. - fscrypt_encrypt_symlink() creates the encrypted target if needed. The new helpers actually fix some subtle