summaryrefslogtreecommitdiffstats
path: root/drivers/firmware/efi/libstub
AgeCommit message (Collapse)Author
2017-11-04Merge branch 'fixes' of git://git.armlinux.org.uk/~rmk/linux-armLinus Torvalds
Pull ARM fixes from Russell King: - omit EFI memory map sorting, which was recently introduced, but caused problems with the decompressor due to additional sections being emitted. - avoid unaligned load fault-generating instructions in the decompressor by switching to a private unaligned implementation. - add a symbol into the decompressor to further debug non-boot situations (ld's documentation is extremely poor for how "." works, ld doesn't seem to follow its own documentation!) - parse endian information to sparse * 'fixes' of git://git.armlinux.org.uk/~rmk/linux-arm: ARM: add debug ".edata_real" symbol ARM: 8716/1: pass endianness info to sparse efi/libstub: arm: omit sorting of the UEFI memory map ARM: 8715/1: add a private asm/unaligned.h
2017-11-02Merge tag 'spdx_identifiers-4.14-rc8' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core Pull initial SPDX identifiers from Greg KH: "License cleanup: add SPDX license identifiers to some files Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>" * tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: License cleanup: add SPDX license identifier to uapi header files with a license License cleanup: add SPDX license identifier to uapi header files with no license License cleanup: add SPDX GPL-2.0 license identifier to files with no license
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-10-27efi/libstub: arm: omit sorting of the UEFI memory mapArd Biesheuvel
ARM shares its EFI stub implementation with arm64, which has some special handling in the virtual remapping code to a) make sure that we can map everything even if the OS executes with 64k page size, and b) make sure that adjacent regions with the same attributes are not reordered or moved apart in memory. The latter is a workaround for a 'feature' that was shortly recommended by UEFI spec v2.5, but deprecated shortly after, due to the fact that it broke many OS installers, including non-Linux ones, and it was never widely implemented for ARM systems. Before implementing b), the arm64 code simply rounded up all regions to 64 KB granularity, but given that that results in moving adjacent regions apart, it had to be refined when b) was implemented. The adjacency check requires a sort() pass, due to the fact that the UEFI spec does not mandate any ordering, and the inclusion of the lib/sort.c code into the ARM EFI stub is causing some trouble with the decompressor build due to the fact that its EXPORT_SYMBOL() call triggers the creation of ksymtab/kcrctab sections. So let's simply do away with the adjacency check for ARM, and simply put all UEFI runtime regions together if they have the same memory attributes. This is guaranteed to work, given that ARM only supports 4 KB pages, and allows us to remove the sort() call entirely. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Will Deacon <will.deacon@arm.com> Tested-by: Jeffy Chen <jeffy.chen@rock-chips.com> Tested-by: Gregory CLEMENT <gregory.clement@free-electrons.com> Tested-by: Matthias Brugger <matthias.bgg@gmail.com> Signed-off-by: Russell King <rmk+kernel@armlinux.org.uk>
2017-10-25efi/libstub/arm: Don't randomize runtime regions when CONFIG_HIBERNATION=yArd Biesheuvel
Commit: e69176d68d26 ("ef/libstub/arm/arm64: Randomize the base of the UEFI rt services region") implemented randomization of the virtual mapping that the OS chooses for the UEFI runtime services. This was motivated by the fact that UEFI usually does not bother to specify any permission restrictions for those regions, making them prime real estate for exploitation now that the OS is getting more and more careful not to leave any R+W+X mapped regions lying around. However, this randomization breaks assumptions in the resume from hibernation code, which expects all memory regions populated by UEFI to remain in the same place, including their virtual mapping into the OS memory space. While this assumption may not be entirely reasonable in the first place, breaking it deliberately does not make a lot of sense either. So let's refrain from this randomization pass if CONFIG_HIBERNATION=y. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: James Morse <james.morse@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20171025100448.26056-3-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-07Merge branch 'efi-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull EFI updates from Ingo Molnar: "The main changes in this cycle were: - Transparently fall back to other poweroff method(s) if EFI poweroff fails (and returns) - Use separate PE/COFF section headers for the RX and RW parts of the ARM stub loader so that the firmware can use strict mapping permissions - Add support for requesting the firmware to wipe RAM at warm reboot - Increase the size of the random seed obtained from UEFI so CRNG fast init can complete earlier - Update the EFI framebuffer address if it points to a BAR that gets moved by the PCI resource allocation code - Enable "reset attack mitigation" of TPM environments: this is enabled if the kernel is configured with CONFIG_RESET_ATTACK_MITIGATION=y. - Clang related fixes - Misc cleanups, constification, refactoring, etc" * 'efi-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: efi/bgrt: Use efi_mem_type() efi: Move efi_mem_type() to common code efi/reboot: Make function pointer orig_pm_power_off static efi/random: Increase size of firmware supplied randomness efi/libstub: Enable reset attack mitigation firmware/efi/esrt: Constify attribute_group structures firmware/efi: Constify attribute_group structures firmware/dcdbas: Constify attribute_group structures arm/efi: Split zImage code and data into separate PE/COFF sections arm/efi: Replace open coded constants with symbolic ones arm/efi: Remove pointless dummy .reloc section arm/efi: Remove forbidden values from the PE/COFF header drivers/fbdev/efifb: Allow BAR to be moved instead of claiming it efi/reboot: Fall back to original power-off method if EFI_RESET_SHUTDOWN returns efi/arm/arm64: Add missing assignment of efi.config_table efi/libstub/arm64: Set -fpie when building the EFI stub efi/libstub/arm64: Force 'hidden' visibility for section markers efi/libstub/arm64: Use hidden attribute for struct screen_info reference efi/arm: Don't mark ACPI reclaim memory as MEMBLOCK_NOMAP
2017-09-05Merge tag 'arm64-upstream' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: - VMAP_STACK support, allowing the kernel stacks to be allocated in the vmalloc space with a guard page for trapping stack overflows. One of the patches introduces THREAD_ALIGN and changes the generic alloc_thread_stack_node() to use this instead of THREAD_SIZE (no functional change for other architectures) - Contiguous PTE hugetlb support re-enabled (after being reverted a couple of times). We now have the semantics agreed in the generic mm layer together with API improvements so that the architecture code can detect between contiguous and non-contiguous huge PTEs - Initial support for persistent memory on ARM: DC CVAP instruction exposed to user space (HWCAP) and the in-kernel pmem API implemented - raid6 improvements for arm64: faster algorithm for the delta syndrome and implementation of the recovery routines using Neon - FP/SIMD refactoring and removal of support for Neon in interrupt context. This is in preparation for full SVE support - PTE accessors converted from inline asm to cmpxchg so that we can use LSE atomics if available (ARMv8.1) - Perf support for Cortex-A35 and A73 - Non-urgent fixes and cleanups * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (75 commits) arm64: cleanup {COMPAT_,}SET_PERSONALITY() macro arm64: introduce separated bits for mm_context_t flags arm64: hugetlb: Cleanup setup_hugepagesz arm64: Re-enable support for contiguous hugepages arm64: hugetlb: Override set_huge_swap_pte_at() to support contiguous hugepages arm64: hugetlb: Override huge_pte_clear() to support contiguous hugepages arm64: hugetlb: Handle swap entries in huge_pte_offset() for contiguous hugepages arm64: hugetlb: Add break-before-make logic for contiguous entries arm64: hugetlb: Spring clean huge pte accessors arm64: hugetlb: Introduce pte_pgprot helper arm64: hugetlb: set_huge_pte_at Add WARN_ON on !pte_present arm64: kexec: have own crash_smp_send_stop() for crash dump for nonpanic cores arm64: dma-mapping: Mark atomic_pool as __ro_after_init arm64: dma-mapping: Do not pass data to gen_pool_set_algo() arm64: Remove the !CONFIG_ARM64_HW_AFDBM alternative code paths arm64: Ignore hardware dirty bit updates in ptep_set_wrprotect() arm64: Move PTE_RDONLY bit handling out of set_pte_at() kvm: arm64: Convert kvm_set_s2pte_readonly() from inline asm to cmpxchg() arm64: Convert pte handling from inline asm to using (cmp)xchg arm64: neon/efi: Make EFI fpsimd save/restore variables static ...
2017-08-26efi/random: Increase size of firmware supplied randomnessArd Biesheuvel
The crng code requires at least 64 bytes (2 * CHACHA20_BLOCK_SIZE) to complete the fast boot-time init, so provide that many bytes when invoking UEFI protocols to seed the entropy pool. Also, add a notice so we can tell from the boot log when the seeding actually took place. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170825155019.6740-3-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-26efi/libstub: Enable reset attack mitigationMatthew Garrett
If a machine is reset while secrets are present in RAM, it may be possible for code executed after the reboot to extract those secrets from untouched memory. The Trusted Computing Group specified a mechanism for requesting that the firmware clear all RAM on reset before booting another OS. This is done by setting the MemoryOverwriteRequestControl variable at startup. If userspace can ensure that all secrets are removed as part of a controlled shutdown, it can reset this variable to 0 before triggering a hardware reboot. Signed-off-by: Matthew Garrett <mjg59@google.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170825155019.6740-2-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-21efi/libstub/arm64: Set -fpie when building the EFI stubArd Biesheuvel
Clang may emit absolute symbol references when building in non-PIC mode, even when using the default 'small' code model, which is already mostly position independent to begin with, due to its use of adrp/add pairs that have a relative range of +/- 4 GB. The remedy is to pass the -fpie flag, which can be done safely now that the code has been updated to avoid GOT indirections (which may be emitted due to the compiler assuming that the PIC/PIE code may end up in a shared library that is subject to ELF symbol preemption) Passing -fpie when building code that needs to execute at an a priori unknown offset is arguably an improvement in any case, and given that the recent visibility changes allow the PIC build to pass with GCC as well, let's add -fpie for all arm64 builds rather than only for Clang. Tested-by: Matthias Kaehlcke <mka@chromium.org> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170818194947.19347-5-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-21efi/libstub/arm64: Force 'hidden' visibility for section markersArd Biesheuvel
To prevent the compiler from emitting absolute references to the section markers when running in PIC mode, override the visibility to 'hidden' for all contents of asm/sections.h Tested-by: Matthias Kaehlcke <mka@chromium.org> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170818194947.19347-4-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-17efi: Introduce efi_early_memdesc_ptr to get pointer to memmap descriptorBaoquan He
The existing map iteration helper for_each_efi_memory_desc_in_map can only be used after the kernel initializes the EFI subsystem to set up struct efi_memory_map. Before that we also need iterate map descriptors which are stored in several intermediate structures, like struct efi_boot_memmap for arch independent usage and struct efi_info for x86 arch only. Introduce efi_early_memdesc_ptr() to get pointer to a map descriptor, and replace several places where that primitive is open coded. Signed-off-by: Baoquan He <bhe@redhat.com> [ Various improvements to the text. ] Acked-by: Matt Fleming <matt@codeblueprint.co.uk> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: ard.biesheuvel@linaro.org Cc: fanc.fnst@cn.fujitsu.com Cc: izumi.taku@jp.fujitsu.com Cc: keescook@chromium.org Cc: linux-efi@vger.kernel.org Cc: n-horiguchi@ah.jp.nec.com Cc: thgarnie@google.com Link: http://lkml.kernel.org/r/20170816134651.GF21273@x1 Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-15efi/arm64: add EFI_KIMG_ALIGNMark Rutland
The EFI stub is intimately coupled with the kernel, and takes advantage of this by relocating the kernel at a weaker alignment than the documented boot protocol mandates. However, it does so by assuming it can align the kernel to the segment alignment, and assumes that this is 64K. In subsequent patches, we'll have to consider other details to determine this de-facto alignment constraint. This patch adds a new EFI_KIMG_ALIGN definition that will track the kernel's de-facto alignment requirements. Subsequent patches will modify this as required. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Will Deacon <will.deacon@arm.com> Tested-by: Laura Abbott <labbott@redhat.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk>
2017-07-12efi: avoid fortify checks in EFI stubKees Cook
This avoids CONFIG_FORTIFY_SOURCE from being enabled during the EFI stub build, as adding a panic() implementation may not work well. This can be adjusted in the future. Link: http://lkml.kernel.org/r/1497903987-21002-2-git-send-email-keescook@chromium.org Signed-off-by: Kees Cook <keescook@chromium.org> Suggested-by: Daniel Micay <danielmicay@gmail.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Cc: Matt Fleming <matt@codeblueprint.co.uk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-28efi: Remove duplicate 'const' specifiersArnd Bergmann
gcc-7 shows these harmless warnings: drivers/firmware/efi/libstub/secureboot.c:19:27: error: duplicate 'const' declaration specifier [-Werror=duplicate-decl-specifier] static const efi_char16_t const efi_SecureBoot_name[] = { drivers/firmware/efi/libstub/secureboot.c:22:27: error: duplicate 'const' declaration specifier [-Werror=duplicate-decl-specifier] Removing one of the specifiers gives us the expected behavior. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Matt Fleming <matt@codeblueprint.co.uk> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Josh Boyer <jwboyer@fedoraproject.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Fixes: de8cb458625c ("efi: Get and store the secure boot status") Link: http://lkml.kernel.org/r/20170526113652.21339-3-matt@codeblueprint.co.uk Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-05-05Merge tag 'arm64-upstream' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: - kdump support, including two necessary memblock additions: memblock_clear_nomap() and memblock_cap_memory_range() - ARMv8.3 HWCAP bits for JavaScript conversion instructions, complex numbers and weaker release consistency - arm64 ACPI platform MSI support - arm perf updates: ACPI PMU support, L3 cache PMU in some Qualcomm SoCs, Cortex-A53 L2 cache events and DTLB refills, MAINTAINERS update for DT perf bindings - architected timer errata framework (the arch/arm64 changes only) - support for DMA_ATTR_FORCE_CONTIGUOUS in the arm64 iommu DMA API - arm64 KVM refactoring to use common system register definitions - remove support for ASID-tagged VIVT I-cache (no ARMv8 implementation using it and deprecated in the architecture) together with some I-cache handling clean-up - PE/COFF EFI header clean-up/hardening - define BUG() instruction without CONFIG_BUG * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (92 commits) arm64: Fix the DMA mmap and get_sgtable API with DMA_ATTR_FORCE_CONTIGUOUS arm64: Print DT machine model in setup_machine_fdt() arm64: pmu: Wire-up Cortex A53 L2 cache events and DTLB refills arm64: module: split core and init PLT sections arm64: pmuv3: handle pmuv3+ arm64: Add CNTFRQ_EL0 trap handler arm64: Silence spurious kbuild warning on menuconfig arm64: pmuv3: use arm_pmu ACPI framework arm64: pmuv3: handle !PMUv3 when probing drivers/perf: arm_pmu: add ACPI framework arm64: add function to get a cpu's MADT GICC table drivers/perf: arm_pmu: split out platform device probe logic drivers/perf: arm_pmu: move irq request/free into probe drivers/perf: arm_pmu: split cpu-local irq request/free drivers/perf: arm_pmu: rename irq request/free functions drivers/perf: arm_pmu: handle no platform_device drivers/perf: arm_pmu: simplify cpu_pmu_request_irqs() drivers/perf: arm_pmu: factor out pmu registration drivers/perf: arm_pmu: fold init into alloc drivers/perf: arm_pmu: define armpmu_init_fn ...
2017-04-17efi/libstub/arm: Don't use TASK_SIZE when randomizing the RT spaceArd Biesheuvel
As reported by James, Catalin and Mark, commit: e69176d68d26 ("ef/libstub/arm/arm64: Randomize the base of the UEFI rt services region") ... results in a crash in the firmware, regardless of whether KASLR is in effect or not and whether the firmware implements EFI_RNG_PROTOCOL or not. Mark has identified the root cause to be the inappropriate use of TASK_SIZE in the stub, which arm64 defines as: #define TASK_SIZE (test_thread_flag(TIF_32BIT) ? \ TASK_SIZE_32 : TASK_SIZE_64) and testing thread flags at this point results in the dereference of pointers in uninitialized structures. So instead, introduce a preprocessor symbol EFI_RT_VIRTUAL_LIMIT and define it to TASK_SIZE_64 on arm64 and TASK_SIZE on ARM, both of which are compile time constants. Also, change the 'headroom' variable to static const to force an error if this might change in the future. Tested-by: Mark Rutland <mark.rutland@arm.com> Tested-by: James Morse <james.morse@arm.com> Tested-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170417093201.10181-2-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-04-05efi/libstub/arm*: Set default address and size cells values for an empty dtbSameer Goel
In cases where a device tree is not provided (ie ACPI based system), an empty fdt is generated by efistub. #address-cells and #size-cells are not set in the empty fdt, so they default to 1 (4 byte wide). This can be an issue on 64-bit systems where values representing addresses, etc may be 8 bytes wide as the default value does not align with the general requirements for an empty DTB, and is fragile when passed to other agents as extra care is required to read the entire width of a value. This issue is observed on Qualcomm Technologies QDF24XX platforms when kexec-tools inserts 64-bit addresses into the "linux,elfcorehdr" and "linux,usable-memory-range" properties of the fdt. When the values are later consumed, they are truncated to 32-bit. Setting #address-cells and #size-cells to 2 at creation of the empty fdt resolves the observed issue, and makes the fdt less fragile. Signed-off-by: Sameer Goel <sgoel@codeaurora.org> Signed-off-by: Jeffrey Hugo <jhugo@codeaurora.org> Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2017-04-05ef/libstub/arm/arm64: Randomize the base of the UEFI rt services regionArd Biesheuvel
Update the allocation logic for the virtual mapping of the UEFI runtime services to start from a randomized base address if KASLR is in effect, and if the UEFI firmware exposes an implementation of EFI_RNG_PROTOCOL. This makes it more difficult to predict the location of exploitable data structures in the runtime UEFI firmware, which increases robustness against attacks. Note that these regions are only mapped during the time a runtime service call is in progress, and only on a single CPU at a time, bit given the lack of a downside, let's enable it nonetheless. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bhe@redhat.com Cc: bhsharma@redhat.com Cc: eugene@hp.com Cc: evgeny.kalugin@intel.com Cc: jhugo@codeaurora.org Cc: leif.lindholm@linaro.org Cc: linux-efi@vger.kernel.org Cc: mark.rutland@arm.com Cc: roy.franz@cavium.com Cc: rruigrok@codeaurora.org Link: http://lkml.kernel.org/r/20170404160910.28115-3-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-04-05efi/libstub/arm/arm64: Disable debug prints on 'quiet' cmdline argArd Biesheuvel
The EFI stub currently prints a number of diagnostic messages that do not carry a lot of information. Since these prints are not controlled by 'loglevel' or other command line parameters, and since they appear on the EFI framebuffer as well (if enabled), it would be nice if we could turn them off. So let's add support for the 'quiet' command line parameter in the stub, and disable the non-error prints if it is passed. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bhe@redhat.com Cc: bhsharma@redhat.com Cc: bp@alien8.de Cc: eugene@hp.com Cc: evgeny.kalugin@intel.com Cc: jhugo@codeaurora.org Cc: leif.lindholm@linaro.org Cc: linux-efi@vger.kernel.org Cc: roy.franz@cavium.com Cc: rruigrok@codeaurora.org Link: http://lkml.kernel.org/r/20170404160910.28115-2-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-04-05efi/libstub: Unify command line param parsingArd Biesheuvel
Merge the parsing of the command line carried out in arm-stub.c with the handling in efi_parse_options(). Note that this also fixes the missing handling of CONFIG_CMDLINE_FORCE=y, in which case the builtin command line should supersede the one passed by the firmware. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: bhe@redhat.com Cc: bhsharma@redhat.com Cc: bp@alien8.de Cc: eugene@hp.com Cc: evgeny.kalugin@intel.com Cc: jhugo@codeaurora.org Cc: leif.lindholm@linaro.org Cc: linux-efi@vger.kernel.org Cc: mark.rutland@arm.com Cc: roy.franz@cavium.com Cc: rruigrok@codeaurora.org Link: http://lkml.kernel.org/r/20170404160910.28115-1-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-04-05efi/libstub: Fix harmless command line parsing bugArd Biesheuvel
When we parse the 'efi=' command line parameter in the stub, we fail to take spaces into account. Currently, the only way this could result in unexpected behavior is when the string 'nochunk' appears as a separate command line argument after 'efi=xxx,yyy,zzz ', so this is harmless in practice. But let's fix it nonetheless. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170404160245.27812-12-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-04-05efi/arm32-stub: Allow boot-time allocations in the vmlinux regionArd Biesheuvel
The arm32 kernel decompresses itself to the base of DRAM unconditionally, and so it is the EFI stub's job to ensure that the region is available. Currently, we do this by creating an allocation there, and giving up if that fails. However, any boot services regions occupying this area are not an issue, given that the decompressor executes strictly after the stub calls ExitBootServices(). So let's try a bit harder to proceed if the initial allocation fails, and check whether any memory map entries occupying the region may be considered safe. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Leif Lindholm <leif.lindholm@linaro.org> Reviewed-by: Eugene Cohen <eugene@hp.com> Reviewed-by: Roy Franz <roy.franz@cavium.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170404160245.27812-11-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-04-05efi/arm-stub: Round up FDT allocation to mapping sizeArd Biesheuvel
The FDT is mapped via a fixmap entry that is at least 2 MB in size and 2 MB aligned on 4 KB page size kernels. On UEFI systems, the FDT allocation may share this 2 MB mapping with a reserved region (or another memory region that we should never map), unless we account for this in the size of the allocation (the alignment is already 2 MB) So instead of taking guesses at the needed space, simply allocate 2 MB immediately. The allocation will be recorded as EFI_LOADER_DATA, and the kernel only memblock_reserve()'s the actual size of the FDT, so the unused space will be released back to the kernel. Reviewed-By: Jeffrey Hugo <jhugo@codeaurora.org> Tested-by: Richard Ruigrok <rruigrok@codeaurora.org> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170404160245.27812-6-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-04-05efi/arm-stub: Correct FDT and initrd allocation rules for arm64Ard Biesheuvel
On arm64, we have made some changes over the past year to the way the kernel itself is allocated and to how it deals with the initrd and FDT. This patch brings the allocation logic in the EFI stub in line with that, which is necessary because the introduction of KASLR has created the possibility for the initrd to be allocated in a place where the kernel may not be able to map it. (This is mostly a theoretical scenario, since it only affects systems where the physical memory footprint exceeds the size of the linear mapping.) Since we know the kernel itself will be covered by the linear mapping, choose a suitably sized window (i.e., based on the size of the linear region) covering the kernel when allocating memory for the initrd. The FDT may be anywhere in memory on arm64 now that we map it via the fixmap, so we can lift the address restriction there completely. Tested-by: Richard Ruigrok <rruigrok@codeaurora.org> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Jeffrey Hugo <jhugo@codeaurora.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/20170404160245.27812-4-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-04-05efi/libstub: Skip GOP with PIXEL_BLT_ONLY formatCohen, Eugene
The UEFI Specification permits Graphics Output Protocol (GOP) instances without direct framebuffer access. This is indicated in the Mode structure with a PixelFormat enumeration value of PIXEL_BLT_ONLY. Given that the kernel does not know how to drive a Blt() only framebuffer (which is only permitted before ExitBootServices() anyway), we should disregard such framebuffers when looking for a GOP instance that is suitable for use as the boot console. So modify the EFI GOP initialization to not use a PIXEL_BLT_ONLY instance, preventing attempts later in boot to use an invalid screen_info.lfb_base address. Signed-off-by: Eugene Cohen <eugene@hp.com> [ Moved the Blt() only check into the loop and clarified that Blt() only GOPs are unusable by the kernel. ] Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: <stable@vger.kernel.org> # v4.7+ Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: leif.lindholm@linaro.org Cc: linux-efi@vger.kernel.org Cc: lorenzo.pieralisi@arm.com Fixes: 9822504c1fa5 ("efifb: Enable the efi-framebuffer platform driver ...") Link: http://lkml.kernel.org/r/20170404152744.26687-2-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02efi/libstub: Treat missing SecureBoot variable as Secure Boot disabledArd Biesheuvel
The newly refactored code that infers the firmware's Secure Boot state prints the following error when the EFI variable 'SecureBoot' does not exist: EFI stub: ERROR: Could not determine UEFI Secure Boot status. However, this variable is only guaranteed to be defined on a system that is Secure Boot capable to begin with, and so it is not an error if it is missing. So report Secure Boot as being disabled in this case, without printing any error messages. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1488395076-29712-2-git-send-email-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-02-07efi/libstub: Make file I/O chunking x86-specificArd Biesheuvel
The ARM decompressor is finicky when it comes to uninitialized variables with local linkage, the reason being that it may relocate .text and .bss independently when executing from ROM. This is only possible if all references into .bss from .text are absolute, and this happens to be the case for references emitted under -fpic to symbols with external linkage, and so all .bss references must involve symbols with external linkage. When building the ARM stub using clang, the initialized local variable __chunk_size is optimized into a zero-initialized flag that indicates whether chunking is in effect or not. This flag is therefore emitted into .bss, which triggers the ARM decompressor's diagnostics, resulting in a failed build. Under UEFI, we never execute the decompressor from ROM, so the diagnostic makes little sense here. But we can easily work around the issue by making __chunk_size global instead. However, given that the file I/O chunking that is controlled by the __chunk_size variable is intended to work around known bugs on various x86 implementations of UEFI, we can simply make the chunking an x86 specific feature. This is an improvement by itself, and also removes the need to parse the efi= options in the stub entirely. Tested-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1486380166-31868-8-git-send-email-ard.biesheuvel@linaro.org [ Small readability edits. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-02-07efi: Disable secure boot if shim is in insecure modeJosh Boyer
A user can manually tell the shim boot loader to disable validation of images it loads. When a user does this, it creates a UEFI variable called MokSBState that does not have the runtime attribute set. Given that the user explicitly disabled validation, we can honor that and not enable secure boot mode if that variable is set. Signed-off-by: Josh Boyer <jwboyer@fedoraproject.org> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1486380166-31868-6-git-send-email-ard.biesheuvel@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-02-07efi: Get and store the secure boot statusDavid Howells
Get the firmware's secure-boot status in the kernel boot wrapper and stash it somewhere that the main kernel image can find. The efi_get_secureboot() function is extracted from the ARM stub and (a) generalised so that it can be called from x86 and (b) made to use efi_call_runtime() so that it can be run in mixed-mode. For x86, it is stored in boot_params and can be overridden by the boot loader or kexec. This allows secure-boot mode to be passed on to a new kernel. Suggested-by: Lukas Wunner <lukas@wunner.de> Signed-off-by: David Howells <dhowells@redhat.com> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matt Fleming <matt@codeblueprint.co.uk> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-efi@vger.kernel.org Link: http://lkml.kernel.org/r/1486380166-31868-5-git-send-email-ard.biesheuvel@linaro.org [ Small readability edits. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-02-07Merge tag 'v4.10-rc7' into e