summaryrefslogtreecommitdiffstats
path: root/include
diff options
context:
space:
mode:
authorDavid S. Miller <davem@davemloft.net>2018-04-26 21:19:50 -0400
committerDavid S. Miller <davem@davemloft.net>2018-04-26 21:19:50 -0400
commit79741a38b4a2538a68342c45b813ecb9dd648ee8 (patch)
treebd744350673c8e3a912525b4733ab8e0ae24cdfd /include
parentcb586c63e3fc5b227c51fd8c4cb40b34d3750645 (diff)
parentc0885f61bbb6a89c35397d3a8fe49c35822cde81 (diff)
Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says: ==================== pull-request: bpf-next 2018-04-27 The following pull-request contains BPF updates for your *net-next* tree. The main changes are: 1) Add extensive BPF helper description into include/uapi/linux/bpf.h and a new script bpf_helpers_doc.py which allows for generating a man page out of it. Thus, every helper in BPF now comes with proper function signature, detailed description and return code explanation, from Quentin. 2) Migrate the BPF collect metadata tunnel tests from BPF samples over to the BPF selftests and further extend them with v6 vxlan, geneve and ipip tests, simplify the ipip tests, improve documentation and convert to bpf_ntoh*() / bpf_hton*() api, from William. 3) Currently, helpers that expect ARG_PTR_TO_MAP_{KEY,VALUE} can only access stack and packet memory. Extend this to allow such helpers to also use map values, which enabled use cases where value from a first lookup can be directly used as a key for a second lookup, from Paul. 4) Add a new helper bpf_skb_get_xfrm_state() for tc BPF programs in order to retrieve XFRM state information containing SPI, peer address and reqid values, from Eyal. 5) Various optimizations in nfp driver's BPF JIT in order to turn ADD and SUB instructions with negative immediate into the opposite operation with a positive immediate such that nfp can better fit small immediates into instructions. Savings in instruction count up to 4% have been observed, from Jakub. 6) Add the BPF prog's gpl_compatible flag to struct bpf_prog_info and add support for dumping this through bpftool, from Jiri. 7) Move the BPF sockmap samples over into BPF selftests instead since sockmap was rather a series of tests than sample anyway and this way this can be run from automated bots, from John. 8) Follow-up fix for bpf_adjust_tail() helper in order to make it work with generic XDP, from Nikita. 9) Some follow-up cleanups to BTF, namely, removing unused defines from BTF uapi header and renaming 'name' struct btf_* members into name_off to make it more clear they are offsets into string section, from Martin. 10) Remove test_sock_addr from TEST_GEN_PROGS in BPF selftests since not run directly but invoked from test_sock_addr.sh, from Yonghong. 11) Remove redundant ret assignment in sample BPF loader, from Wang. 12) Add couple of missing files to BPF selftest's gitignore, from Anders. There are two trivial merge conflicts while pulling: 1) Remove samples/sockmap/Makefile since all sockmap tests have been moved to selftests. 2) Add both hunks from tools/testing/selftests/bpf/.gitignore to the file since git should ignore all of them. ==================== Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'include')
-rw-r--r--include/uapi/linux/bpf.h1784
-rw-r--r--include/uapi/linux/btf.h8
2 files changed, 1399 insertions, 393 deletions
diff --git a/include/uapi/linux/bpf.h b/include/uapi/linux/bpf.h
index c8383a289f7b..da77a9388947 100644
--- a/include/uapi/linux/bpf.h
+++ b/include/uapi/linux/bpf.h
@@ -377,403 +377,1396 @@ union bpf_attr {
};
} __attribute__((aligned(8)));
-/* BPF helper function descriptions:
- *
- * void *bpf_map_lookup_elem(&map, &key)
- * Return: Map value or NULL
- *
- * int bpf_map_update_elem(&map, &key, &value, flags)
- * Return: 0 on success or negative error
- *
- * int bpf_map_delete_elem(&map, &key)
- * Return: 0 on success or negative error
- *
- * int bpf_probe_read(void *dst, int size, void *src)
- * Return: 0 on success or negative error
+/* The description below is an attempt at providing documentation to eBPF
+ * developers about the multiple available eBPF helper functions. It can be
+ * parsed and used to produce a manual page. The workflow is the following,
+ * and requires the rst2man utility:
+ *
+ * $ ./scripts/bpf_helpers_doc.py \
+ * --filename include/uapi/linux/bpf.h > /tmp/bpf-helpers.rst
+ * $ rst2man /tmp/bpf-helpers.rst > /tmp/bpf-helpers.7
+ * $ man /tmp/bpf-helpers.7
+ *
+ * Note that in order to produce this external documentation, some RST
+ * formatting is used in the descriptions to get "bold" and "italics" in
+ * manual pages. Also note that the few trailing white spaces are
+ * intentional, removing them would break paragraphs for rst2man.
+ *
+ * Start of BPF helper function descriptions:
+ *
+ * void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
+ * Description
+ * Perform a lookup in *map* for an entry associated to *key*.
+ * Return
+ * Map value associated to *key*, or **NULL** if no entry was
+ * found.
+ *
+ * int bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
+ * Description
+ * Add or update the value of the entry associated to *key* in
+ * *map* with *value*. *flags* is one of:
+ *
+ * **BPF_NOEXIST**
+ * The entry for *key* must not exist in the map.
+ * **BPF_EXIST**
+ * The entry for *key* must already exist in the map.
+ * **BPF_ANY**
+ * No condition on the existence of the entry for *key*.
+ *
+ * Flag value **BPF_NOEXIST** cannot be used for maps of types
+ * **BPF_MAP_TYPE_ARRAY** or **BPF_MAP_TYPE_PERCPU_ARRAY** (all
+ * elements always exist), the helper would return an error.
+ * Return
+ * 0 on success, or a negative error in case of failure.
+ *
+ * int bpf_map_delete_elem(struct bpf_map *map, const void *key)
+ * Description
+ * Delete entry with *key* from *map*.
+ * Return
+ * 0 on success, or a negative error in case of failure.
+ *
+ * int bpf_probe_read(void *dst, u32 size, const void *src)
+ * Description
+ * For tracing programs, safely attempt to read *size* bytes from
+ * address *src* and store the data in *dst*.
+ * Return
+ * 0 on success, or a negative error in case of failure.
*
* u64 bpf_ktime_get_ns(void)
- * Return: current ktime
- *
- * int bpf_trace_printk(const char *fmt, int fmt_size, ...)
- * Return: length of buffer written or negative error
- *
- * u32 bpf_prandom_u32(void)
- * Return: random value
- *
- * u32 bpf_raw_smp_processor_id(void)
- * Return: SMP processor ID
- *
- * int bpf_skb_store_bytes(skb, offset, from, len, flags)
- * store bytes into packet
- * @skb: pointer to skb
- * @offset: offset within packet from skb->mac_header
- * @from: pointer where to copy bytes from
- * @len: number of bytes to store into packet
- * @flags: bit 0 - if true, recompute skb->csum
- * other bits - reserved
- * Return: 0 on success or negative error
- *
- * int bpf_l3_csum_replace(skb, offset, from, to, flags)
- * recompute IP checksum
- * @skb: pointer to skb
- * @offset: offset within packet where IP checksum is located
- * @from: old value of header field
- * @to: new value of header field
- * @flags: bits 0-3 - size of header field
- * other bits - reserved
- * Return: 0 on success or negative error
- *
- * int bpf_l4_csum_replace(skb, offset, from, to, flags)
- * recompute TCP/UDP checksum
- * @skb: pointer to skb
- * @offset: offset within packet where TCP/UDP checksum is located
- * @from: old value of header field
- * @to: new value of header field
- * @flags: bits 0-3 - size of header field
- * bit 4 - is pseudo header
- * other bits - reserved
- * Return: 0 on success or negative error
- *
- * int bpf_tail_call(ctx, prog_array_map, index)
- * jump into another BPF program
- * @ctx: context pointer passed to next program
- * @prog_array_map: pointer to map which type is BPF_MAP_TYPE_PROG_ARRAY
- * @index: 32-bit index inside array that selects specific program to run
- * Return: 0 on success or negative error
- *
- * int bpf_clone_redirect(skb, ifindex, flags)
- * redirect to another netdev
- * @skb: pointer to skb
- * @ifindex: ifindex of the net device
- * @flags: bit 0 - if set, redirect to ingress instead of egress
- * other bits - reserved
- * Return: 0 on success or negative error
+ * Description
+ * Return the time elapsed since system boot, in nanoseconds.
+ * Return
+ * Current *ktime*.
+ *
+ * int bpf_trace_printk(const char *fmt, u32 fmt_size, ...)
+ * Description
+ * This helper is a "printk()-like" facility for debugging. It
+ * prints a message defined by format *fmt* (of size *fmt_size*)
+ * to file *\/sys/kernel/debug/tracing/trace* from DebugFS, if
+ * available. It can take up to three additional **u64**
+ * arguments (as an eBPF helpers, the total number of arguments is
+ * limited to five).
+ *
+ * Each time the helper is called, it appends a line to the trace.
+ * The format of the trace is customizable, and the exact output
+ * one will get depends on the options set in
+ * *\/sys/kernel/debug/tracing/trace_options* (see also the
+ * *README* file under the same directory). However, it usually
+ * defaults to something like:
+ *
+ * ::
+ *
+ * telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg>
+ *
+ * In the above:
+ *
+ * * ``telnet`` is the name of the current task.
+ * * ``470`` is the PID of the current task.
+ * * ``001`` is the CPU number on which the task is
+ * running.
+ * * In ``.N..``, each character refers to a set of
+ * options (whether irqs are enabled, scheduling
+ * options, whether hard/softirqs are running, level of
+ * preempt_disabled respectively). **N** means that
+ * **TIF_NEED_RESCHED** and **PREEMPT_NEED_RESCHED**
+ * are set.
+ * * ``419421.045894`` is a timestamp.
+ * * ``0x00000001`` is a fake value used by BPF for the
+ * instruction pointer register.
+ * * ``<formatted msg>`` is the message formatted with
+ * *fmt*.
+ *
+ * The conversion specifiers supported by *fmt* are similar, but
+ * more limited than for printk(). They are **%d**, **%i**,
+ * **%u**, **%x**, **%ld**, **%li**, **%lu**, **%lx**, **%lld**,
+ * **%lli**, **%llu**, **%llx**, **%p**, **%s**. No modifier (size
+ * of field, padding with zeroes, etc.) is available, and the
+ * helper will return **-EINVAL** (but print nothing) if it
+ * encounters an unknown specifier.
+ *
+ * Also, note that **bpf_trace_printk**\ () is slow, and should
+ * only be used for debugging purposes. For this reason, a notice
+ * bloc (spanning several lines) is printed to kernel logs and
+ * states that the helper should not be used "for production use"
+ * the first time this helper is used (or more precisely, when
+ * **trace_printk**\ () buffers are allocated). For passing values
+ * to user space, perf events should be preferred.
+ * Return
+ * The number of bytes written to the buffer, or a negative error
+ * in case of failure.
+ *
+ * u32 bpf_get_prandom_u32(void)
+ * Description
+ * Get a pseudo-random number.
+ *
+ * From a security point of view, this helper uses its own
+ * pseudo-random internal state, and cannot be used to infer the
+ * seed of other random functions in the kernel. However, it is
+ * essential to note that the generator used by the helper is not
+ * cryptographically secure.
+ * Return
+ * A random 32-bit unsigned value.
+ *
+ * u32 bpf_get_smp_processor_id(void)
+ * Description
+ * Get the SMP (symmetric multiprocessing) processor id. Note that
+ * all programs run with preemption disabled, which means that the
+ * SMP processor id is stable during all the execution of the
+ * program.
+ * Return
+ * The SMP id of the processor running the program.
+ *
+ * int bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len, u64 flags)
+ * Description
+ * Store *len* bytes from address *from* into the packet
+ * associated to *skb*, at *offset*. *flags* are a combination of
+ * **BPF_F_RECOMPUTE_CSUM** (automatically recompute the
+ * checksum for the packet after storing the bytes) and
+ * **BPF_F_INVALIDATE_HASH** (set *skb*\ **->hash**, *skb*\
+ * **->swhash** and *skb*\ **->l4hash** to 0).
+ *
+ * A call to this helper is susceptible to change the underlaying
+ * packet buffer. Therefore, at load time, all checks on pointers
+ * previously done by the verifier are invalidated and must be
+ * performed again, if the helper is used in combination with
+ * direct packet access.
+ * Return
+ * 0 on success, or a negative error in case of failure.
+ *
+ * int bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)
+ * Description
+ * Recompute the layer 3 (e.g. IP) checksum for the packet
+ * associated to *skb*. Computation is incremental, so the helper
+ * must know the former value of the header field that was
+ * modified (*from*), the new value of this field (*to*), and the
+ * number of bytes (2 or 4) for this field, stored in *size*.
+ * Alternatively, it is possible to store the difference between
+ * the previous and the new values of the header field in *to*, by
+ * setting *from* and *size* to 0. For both methods, *offset*
+ * indicates the location of the IP checksum within the packet.
+ *
+ * This helper works in combination with **bpf_csum_diff**\ (),
+ * which does not update the checksum in-place, but offers more
+ * flexibility and can handle sizes larger than 2 or 4 for the
+ * checksum to update.
+ *
+ * A call to this helper is susceptible to change the underlaying
+ * packet buffer. Therefore, at load time, all checks on pointers
+ * previously done by the verifier are invalidated and must be
+ * performed again, if the helper is used in combination with
+ * direct packet access.
+ * Return
+ * 0 on success, or a negative error in case of failure.
+ *
+ * int bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 flags)
+ * Description
+ * Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
+ * packet associated to *skb*. Computation is incremental, so the
+ * helper must know the former value of the header field that was
+ * modified (*from*), the new value of this field (*to*), and the
+ * number of bytes (2 or 4) for this field, stored on the lowest
+ * four bits of *flags*. Alternatively, it is possible to store
+ * the difference between the previous and the new values of the
+ * header field in *to*, by setting *from* and the four lowest
+ * bits of *flags* to 0. For both methods, *offset* indicates the
+ * location of the IP checksum within the packet. In addition to
+ * the size of the field, *flags* can be added (bitwise OR) actual
+ * flags. With **BPF_F_MARK_MANGLED_0**, a null checksum is left
+ * untouched (unless **BPF_F_MARK_ENFORCE** is added as well), and
+ * for updates resulting in a null checksum the value is set to
+ * **CSUM_MANGLED_0** instead. Flag **BPF_F_PSEUDO_HDR** indicates
+ * the checksum is to be computed against a pseudo-header.
+ *
+ * This helper works in combination with **bpf_csum_diff**\ (),
+ * which does not update the checksum in-place, but offers more
+ * flexibility and can handle sizes larger than 2 or 4 for the
+ * checksum to update.
+ *
+ * A call to this helper is susceptible to change the underlaying
+ * packet buffer. Therefore, at load time, all checks on pointers
+ * previously done by the verifier are invalidated and must be
+ * performed again, if the helper is used in combination with
+ * direct packet access.
+ * Return
+ * 0 on success, or a negative error in case of failure.
+ *
+ * int bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)
+ * Description
+ * This special helper is used to trigger a "tail call", or in
+ * other words, to jump into another eBPF program. The same stack
+ * frame is used (but values on stack and in registers for the
+ * caller are not accessible to the callee). This mechanism allows
+ * for program chaining, either for raising the maximum number of
+ * available eBPF instructions, or to execute given programs in
+ * conditional blocks. For security reasons, there is an upper
+ * limit to the number of successive tail calls that can be
+ * performed.
+ *
+ * Upon call of this helper, the program attempts to jump into a
+ * program referenced at index *index* in *prog_array_map*, a
+ * special map of type **BPF_MAP_TYPE_PROG_ARRAY**, and passes
+ * *ctx*, a pointer to the context.
+ *
+ * If the call succeeds, the kernel immediately runs the first
+ * instruction of the new program. This is not a function call,
+ * and it never returns to the previous program. If the call
+ * fails, then the helper has no effect, and the caller continues
+ * to run its subsequent instructions. A call can fail if the
+ * destination program for the jump does not exist (i.e. *index*
+ * is superior to the number of entries in *prog_array_map*), or
+ * if the maximum number of tail calls has been reached for this
+ * chain of programs. This limit is defined in the kernel by the
+ * macro **MAX_TAIL_CALL_CNT** (not accessible to user space),
+ * which is currently set to 32.
+ * Return
+ * 0 on success, or a negative error in case of failure.
+ *
+ * int bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)
+ * Description
+ * Clone and redirect the packet associated to *skb* to another
+ * net device of index *ifindex*. Both ingress and egress
+ * interfaces can be used for redirection. The **BPF_F_INGRESS**
+ * value in *flags* is used to make the distinction (ingress path
+ * is selected if the flag is present, egress path otherwise).
+ * This is the only flag supported for now.
+ *
+ * In comparison with **bpf_redirect**\ () helper,
+ * **bpf_clone_redirect**\ () has the associated cost of
+ * duplicating the packet buffer, but this can be executed out of
+ * the eBPF program. Conversely, **bpf_redirect**\ () is more
+ * efficient, but it is handled through an action code where the
+ * redirection happens only after the eBPF program has returned.
+ *
+ * A call to this helper is susceptible to change the underlaying
+ * packet buffer. Therefore, at load time, all checks on pointers
+ * previously done by the verifier are invalidated and must be
+ * performed again, if the helper is used in combination with
+ * direct packet access.
+ * Return
+ * 0 on success, or a negative error in case of failure.
*
* u64 bpf_get_current_pid_tgid(void)
- * Return: current->tgid << 32 | current->pid
+ * Return
+ * A 64-bit integer containing the current tgid and pid, and
+ * created as such:
+ * *current_task*\ **->tgid << 32 \|**
+ * *current_task*\ **->pid**.
*
* u64 bpf_get_current_uid_gid(void)
- * Return: current_gid << 32 | current_uid
- *
- * int bpf_get_current_comm(char *buf, int size_of_buf)
- * stores current->comm into buf
- * Return: 0 on success or negative error
- *
- * u32 bpf_get_cgroup_classid(skb)
- * retrieve a proc's classid
- * @skb: pointer to skb
- * Return: classid if != 0
- *
- * int bpf_skb_vlan_push(skb, vlan_proto, vlan_tci)
- * Return: 0 on success or negative error
- *
- * int bpf_skb_vlan_pop(skb)
- * Return: 0 on success or negative error
- *
- * int bpf_skb_get_tunnel_key(skb, key, size, flags)
- * int bpf_skb_set_tunnel_key(skb, key, size, flags)
- * retrieve or populate tunnel metadata
- * @skb: pointer to skb
- * @key: pointer to 'struct bpf_tunnel_key'
- * @size: size of 'struct bpf_tunnel_key'
- * @flags: room for future extensions
- * Return: 0 on success or negative error
- *
- * u64 bpf_perf_event_read(map, flags)
- * read perf event counter value
- * @map: pointer to perf_event_array map
- * @flags: index of event in the map or bitmask flags
- * Return: value of perf event counter read or error code
- *
- * int bpf_redirect(ifindex, flags)
- * redirect to another netdev
- * @ifindex: ifindex of the net device
- * @flags:
- * cls_bpf:
- * bit 0 - if set, redirect to ingress instead of egress
- * other bits - reserved
- * xdp_bpf:
- * all bits - reserved
- * Return: cls_bpf: TC_ACT_REDIRECT on success or TC_ACT_SHOT on error
- * xdp_bfp: XDP_REDIRECT on success or XDP_ABORT on error
- * int bpf_redirect_map(map, key, flags)
- * redirect to endpoint in map
- * @map: pointer to dev map
- * @key: index in map to lookup
- * @flags: --
- * Return: XDP_REDIRECT on success or XDP_ABORT on error
- *
- * u32 bpf_get_route_realm(skb)
- * retrieve a dst's tclassid
- * @skb: pointer to skb
- * Return: realm if != 0
- *
- * int bpf_perf_event_output(ctx, map, flags, data, size)
- * output perf raw sample
- * @ctx: struct pt_regs*
- * @map: pointer to perf_event_array map
- * @flags: index of event in the map or bitmask flags
- * @data: data on stack to be output as raw data
- * @size: size of data
- * Return: 0 on success or negative error
- *
- * int bpf_get_stackid(ctx, map, flags)
- * walk user or kernel stack and return id
- * @ctx: struct pt_regs*
- * @map: pointer to stack_trace map
- * @flags: bits 0-7 - numer of stack frames to skip
- * bit 8 - collect user stack instead of kernel
- * bit 9 - compare stacks by hash only
- * bit 10 - if two different stacks hash into the same stackid
- * discard old
- * other bits - reserved
- * Return: >= 0 stackid on success or negative error
- *
- * s64 bpf_csum_diff(from, from_size, to, to_size, seed)
- * calculate csum diff
- * @from: raw from buffer
- * @from_size: length of from buffer
- * @to: raw to buffer
- * @to_size: length of to buffer
- * @seed: optional seed
- * Return: csum result or negative error code
- *
- * int bpf_skb_get_tunnel_opt(skb, opt, size)
- * retrieve tunnel options metadata
- * @skb: pointer to skb
- * @opt: pointer to raw tunnel option data
- * @size: size of @opt
- * Return: option size
- *
- * int bpf_skb_set_tunnel_opt(skb, opt, size)
- * populate tunnel options metadata
- * @skb: pointer to skb
- * @opt: pointer to raw tunnel option data
- * @size: size of @opt
- * Return: 0 on success or negative error
- *
- * int bpf_skb_change_proto(skb, proto, flags)
- * Change protocol of the skb. Currently supported is v4 -> v6,
- * v6 -> v4 transitions. The helper will also resize the skb. eBPF
- * program is expected to fill the new headers via skb_store_bytes
- * and lX_csum_replace.
- * @skb: pointer to skb
- * @proto: new skb->protocol type
- * @flags: reserved
- * Return: 0 on success or negative error
- *
- * int bpf_skb_change_type(skb, type)
- * Change packet type of skb.
- * @skb: pointer to skb
- * @type: new skb->pkt_type type
- * Return: 0 on success or negative error
- *
- * int bpf_skb_under_cgroup(skb, map, index)
- * Check cgroup2 membership of skb
- * @skb: pointer to skb
- * @map: pointer to bpf_map in BPF_MAP_TYPE_CGROUP_ARRAY type
- * @index: index of the cgroup in the bpf_map
- * Return:
- * == 0 skb failed the cgroup2 descendant test
- * == 1 skb succeeded the cgroup2 descendant test
- * < 0 error
- *
- * u32 bpf_get_hash_recalc(skb)
- * Retrieve and possibly recalculate skb->hash.
- * @skb: pointer to skb
- * Return: hash
+ * Return
+ * A 64-bit integer containing the current GID and UID, and
+ * created as such: *current_gid* **<< 32 \|** *current_uid*.
+ *
+ * int bpf_get_current_comm(char *buf, u32 size_of_buf)
+ * Description
+ * Copy the **comm** attribute of the current task into *buf* of
+ * *size_of_buf*. The **comm** attribute contains the name of
+ * the executable (excluding the path) for the current task. The
+ * *size_of_buf* must be strictly positive. On success, the
+ * helper makes sure that the *buf* is NUL-terminated. On failure,
+ * it is filled with zeroes.
+ * Return
+ * 0 on success, or a negative error in case of failure.
+ *
+ * u32 bpf_get_cgroup_classid(struct sk_buff *skb)
+ * Description
+ * Retrieve the classid for the current task, i.e. for the net_cls
+ * cgroup to which *skb* belongs.
+ *
+ * This helper can be used on TC egress path, but not on ingress.
+ *
+ * The net_cls cgroup provides an interface to tag network packets
+ * based on a user-provided identifier for all traffic coming from
+ * the tasks belonging to the related cgroup. See also the related
+ * kernel documentation, available from the Linux sources in file
+ * *Documentation/cgroup-v1/net_cls.txt*.
+ *
+ * The Linux kernel has two versions for cgroups: there are
+ * cgroups v1 and cgroups v2. Both are available to users, who can
+ * use a mixture of them, but note that the net_cls cgroup is for
+ * cgroup v1 only. This makes it incompatible with BPF programs
+ * run on cgroups, which is a cgroup-v2-only feature (a socket can
+ * only hold data for one version of cgroups at a time).
+ *
+ * This helper is only available is the kernel was compiled with
+ * the **CONFIG_CGROUP_NET_CLASSID** configuration option set to
+ * "**y**" or to "**m**".
+ * Return
+ * The classid, or 0 for the default unconfigured classid.
+ *
+ * int bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
+ * Description
+ * Push a *vlan_tci* (VLAN tag control information) of protocol
+ * *vlan_proto* to the packet associated to *skb*, then update
+ * the checksum. Note that if *vlan_proto* is different from
+ * **ETH_P_8021Q** and **ETH_P_8021AD**, it is considered to
+ * be **ETH_P_8021Q**.
+ *
+ * A call to this helper is susceptible to change the underlaying
+ * packet buffer. Therefore, at load time, all checks on pointers
+ * previously done by the verifier are invalidated and must be
+ * performed again, if the helper is used in combination with
+ * direct packet access.
+ * Return
+ * 0 on success, or a negative error in case of failure.
+ *
+ * int bpf_skb_vlan_pop(struct sk_buff *skb)
+ * Description
+ * Pop a VLAN header from the packet associated to *skb*.
+ *
+ * A call to this helper is susceptible to change the underlaying
+ * packet buffer. Therefore, at load time, all checks on pointers
+ * previously done by the verifier are invalidated and must be
+ * performed again, if the helper is used in combination with
+ * direct packet access.
+ * Return
+ * 0 on success, or a negative error in case of failure.
+ *
+ * int bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
+ * Description
+ * Get tunnel metadata. This helper takes a pointer *key* to an
+ * empty **struct bpf_tunnel_key** of **size**, that will be
+ * filled with tunnel metadata for the packet associated to *skb*.
+ * The *flags* can be set to **BPF_F_TUNINFO_IPV6**, which
+ * indicates that the tunnel is based on IPv6 protocol instead of
+ * IPv4.
+ *
+ * The **struct bpf_tunnel_key** is an object that generalizes the
+ * principal parameters used by various tunneling protocols into a
+ * single struct. This way, it can be used to easily make a
+ * decision based on the contents of the encapsulation header,
+ * "summarized" in this struct. In particular, it holds the IP
+ * address of the remote end (IPv4 or IPv6, depending on the case)
+ * in *key*\ **->remote_ipv4** or *key*\ **->remote_ipv6**. Also,
+ * this struct exposes the *key*\ **->tunnel_id**, which is
+ * generally mapped to a VNI (Virtual Network Identifier), making
+ * it programmable together with the **bpf_skb_set_tunnel_key**\
+ * () helper.
+ *
+ * Let's imagine that the following code is part of a program
+ * attached to the TC ingress interface, on one end of a GRE
+ * tunnel, and is supposed to filter out all messages coming from
+ * remote ends with IPv4 address other than 10.0.0.1:
+ *
+ * ::
+ *
+ * int ret;
+ * struct bpf_tunnel_key key = {};
+ *
+ * ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
+ * if (ret < 0)
+ * return TC_ACT_SHOT; // drop packet
+ *
+ * if (key.remote_ipv4 != 0x0a000001)
+ * return TC_ACT_SHOT; // drop packet
+ *
+ * return TC_ACT_OK; // accept packet
+ *
+ * This interface can also be used with all encapsulation devices
+ * that can operate in "collect metadata" mode: instead of having
+ * one network device per specific configuration, the "collect
+ * metadata" mode only requires a single device where the
+ * configuration can be extracted from this helper.
+ *
+ * This can be used together with various tunnels such as VXLan,
+ * Geneve, GRE or IP in IP (IPIP).
+ * Return
+ * 0 on success, or a negative error in case of failure.
+ *
+ * int bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32 size, u64 flags)
+ * Description
+ * Populate tunnel metadata for packet associated to *skb.* The
+ * tunnel metadata is set to the contents of *key*, of *size*. The
+ * *flags* can be set to a combination of the following values:
+ *
+ * **BPF_F_TUNINFO_IPV6**
+ * Indicate that the tunnel is based on IPv6 protocol
+ * instead of IPv4.
+ * **BPF_F_ZERO_CSUM_TX**
+ * For IPv4 packets, add a flag to tunnel metadata
+ * indicating that checksum computation should be skipped
+ * and checksum set to zeroes.
+ * **BPF_F_DONT_FRAGMENT**
+ * Add a flag to tunnel metadata indicating that the
+ * packet should not be fragmented.
+ * **BPF_F_SEQ_NUMBER**
+ * Add a flag to tunnel metadata indicating that a
+ * sequence number should be added to tunnel header before
+ * sending the packet. This flag was added for GRE
+ * encapsulation, but might be used with other protocols
+ * as well in the future.
+ *
+ * Here is a typical usage on the transmit path:
+ *
+ * ::
+ *
+ * struct bpf_tunnel_key key;
+ * populate key ...
+ * bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);
+ * bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);
+ *
+ * See also the description of the **bpf_skb_get_tunnel_key**\ ()
+ * helper for additional information.
+ * Return
+ * 0 on success, or a negative error in case of failure.
+ *
+ * u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)
+ * Description
+ * Read the value of a perf event counter. This helper relies on a
+ * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. The nature of
+ * the perf event counter is selected when *map* is updated with
+ * perf event file descriptors. The *map* is an array whose size
+ * is the number of available CPUs, and each cell contains a value
+ * relative to one CPU. The value to retrieve is indicated by
+ * *flags*, that contains the index of the CPU to look up, masked
+ * with **BPF_F_INDEX_MASK**. Alternatively, *flags* can be set to
+ * **BPF_F_CURRENT_CPU** to indicate that the value for the
+ * current CPU should be retrieved.
+ *
+ * Note that before Linux 4.13, only hardware perf event can be
+ * retrieved.
+ *
+ * Also, be aware that the newer helper
+ * **bpf_perf_event_read_value**\ () is recommended over
+ * **bpf_perf_event_read*\ () in general. The latter has some ABI
+ * quirks where error and counter value are used as a return code
+ * (which is wrong to do since ranges may overlap). This issue is
+ * fixed with bpf_perf_event_read_value(), which at the same time
+ * provides more features over the **bpf_perf_event_read**\ ()
+ * interface. Please refer to the description of
+ * **bpf_perf_event_read_value**\ () for details.
+ * Return
+ * The value of the perf event counter read from the map, or a
+ * negative error code in case of failure.
+ *
+ * int bpf_redirect(u32 ifindex, u64 flags)
+ * Description
+ * Redirect the packet to another net device of index *ifindex*.
+ * This helper is somewhat similar to **bpf_clone_redirect**\
+ * (), except that the packet is not cloned, which provides
+ * increased performance.
+ *
+ * Except for XDP, both ingress and egress interfaces can be used
+ * for redirection. The **BPF_F_INGRESS** value in *flags* is used
+ * to make the distinction (ingress path is selected if the flag
+ * is present, egress path otherwise). Currently, XDP only
+ * supports redirection to the egress interface, and accepts no
+ * flag at all.
+ *
+ * The same effect can be attained with the more generic
+ * **bpf_redirect_map**\ (), which requires specific maps to be
+ * used but offers better performance.
+ * Return
+ * For XDP, the helper returns **XDP_REDIRECT** on success or
+ * **XDP_ABORTED** on error. For other program types, the values
+ * are **TC_ACT_REDIRECT** on success or **TC_ACT_SHOT** on
+ * error.
+ *
+ * u32 bpf_get_route_realm(struct sk_buff *skb)
+ * Description
+ * Retrieve the realm or the route, that is to say the
+ * **tclassid** field of the destination for the *skb*. The
+ * indentifier retrieved is a user-provided tag, similar to the
+ * one used with the net_cls cgroup (see description for
+ * **bpf_get_cgroup_classid**\ () helper), but here this tag is
+ * held by a route (a destination entry), not by a task.
+ *
+ * Retrieving this identifier works with the clsact TC egress hook
+ * (see also **tc-bpf(8)**), or alternatively on conventional
+ * classful egress qdiscs, but not on TC ingress path. In case of
+ * clsact TC egress hook, this has the advantage that, internally,
+ * the destination entry has not been dropped yet in the transmit
+ * path. Therefore, the destination entry does not need to be
+ * artificially held via **netif_keep_dst**\ () for a classful
+ * qdisc until the *skb* is freed.
+ *
+ * This helper is available only if the kernel was compiled with
+ * **CONFIG_IP_ROUTE_CLASSID** configuration option.
+ * Return
+ * The realm of the route for the packet associated to *skb*, or 0
+ * if none was found.
+ *
+ * int bpf_perf_event_output(struct pt_reg *ctx, struct bpf_map *map, u64 flags, void *data, u64 size)
+ * Description
+ * Write raw *data* blob into a special BPF perf event held by
+ * *map* of type **BPF_MAP_TYPE_PERF_EVENT_ARRAY**. This perf
+ * event must have the following attributes: **PERF_SAMPLE_RAW**
+ * as **sample_type**, **PERF_TYPE_SOFTWARE** as **type**, and
+ * **PERF_COUNT_SW_BPF_OUTPUT** as **config**.
+ *
+ * The *flags* are used to indicate the index in *map* for which
+ * the value must be put, masked with **BPF_F_INDEX_MASK**.
+ * Alternatively, *flags* can be set to **BPF_F_CURRENT_CPU**
+ * to indicate that the index of the current CPU core should be
+ * used.
+ *
+ * The value to write, of *size*, is passed through eBPF stack and
+ * pointed by *data*.
+ *
+ * The context of the program *ctx* needs also be passed to the
+ * helper.
+ *
+ * On user space, a program willing to read the values needs to
+ * call **perf_event_open**\ () on the perf event (either for
+ * one or for all CPUs) and to store the file descriptor into the
+ * *map*. This must be done before the eBPF program can send data
+ * into it. An example is available in file
+ * *samples/bpf/trace_output_user.c* in the Linux kernel source
+ * tree (the eBPF program counterpart is in
+ * *samples/bpf/trace_output_kern.c*).
+ *
+ * **bpf_perf_event_output**\ () achieves better performance
+ * than **bpf_trace_printk**\ () for sharing data with user
+ * space, and is much better suitable for streaming data from eBPF
+ * programs.
+ *
+ * Note that this helper is not restricted to tracing use cases
+ * and can be used with programs attached to TC or XDP as well,
+ * where it allows for passing data to user space listeners. Data
+ * can be:
+ *
+ * * Only custom structs,
+ * * Only the packet payload, or
+ * * A combination of both.
+ * Return
+ * 0 on success, or a negative error in case of failure.
+ *
+ * int bpf_skb_load_bytes(const struct sk_buff *skb, u32 offset, void *to, u32 len)
+ * Description
+ * This helper was provided as an easy way to load data from a
+ * packet. It can be used to load *len* bytes from *offset* from
+ * the packet associated to *skb*, into the buffer pointed by
+ * *to*.
+ *
+ * Since Linux 4.7, usage of this helper has mostly been replaced
+ * by "direct packet access", enabling packet data to be
+ * manipulated with *skb*\ **->data** and *skb*\ **->data_end**
+ * pointing respectively to the first byte of packet data and to
+ * the byte after the last byte of packet data. However, it
+ * remains useful if one wishes to read large quantities of data
+ * at once from a packet into the eBPF stack.
+ * Return
+ * 0 on success, or a negative error in case of failure.
+ *
+ * int bpf_get_stackid(struct pt_reg *ctx, struct bpf_map *map, u64 flags)
+ * Description
+ * Walk a user or a kernel stack and return its id. To achieve
+ * this, the helper needs *ctx*, which is a pointer to the context
+ * on which the tracing program is executed, and a pointer to a
+ * *map* of type **BPF_MAP_TYPE_STACK_TRACE**.
+ *
+ * The last argument, *flags*, holds the number of stack frames to
+ * skip (from 0 to 255), masked with
+ * **BPF_F_SKIP_FIELD_MASK**. The next bits can be used to set
+ * a combination of the following flags:
+ *
+ * **BPF_F_USER_STACK**
+ * Collect a user space stack instead of a kernel stack.
+ * **BPF_F_FAST_STACK_CMP**
+ * Compare stacks by hash only.
+ * **BPF_F_REUSE_STACKID**
+ * If two different stacks hash into the same *stackid*,
+ * discard the old one.
+ *
+ * The stack id retrieved is a 32 bit long integer handle which
+ * can be further combined with other data (including other stack
+ * ids) and used as a key into maps. This can be useful for
+ * generating a variety of graphs (such as flame graphs or off-cpu
+ * graphs).
+ *
+ * For walking a stack, this helper is an improvement over
+ * **bpf_probe_read**\ (), which can be used with unrolled loops
+ * but is not efficient and consumes a lot of eBPF instructions.
+ * Instead, **bpf_get_stackid**\ () can collect up to
+ * **PERF_MAX_STACK_DEPTH** both kernel and user frames. Note that
+ * this limit can be controlled with the **sysctl** program, and
+ * that it should be manually increased in order to profile long
+ * user stacks (such as stacks for Java programs). To do so, use:
+ *
+ * ::
+ *
+ * # sysctl kernel.perf_event_max_stack=<new value>
+ *
+ * Return
+ * The positive or null stack id on success, or a negative error
+ * in case of failure.
+ *
+ * s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum seed)
+ * Description
+ * Compute a checksum difference, from the raw buffer pointed by
+ * *from*, of length *from_size* (that must be a multiple of 4),
+ * towards the raw buffer pointed by *to*, of size *to_size*
+ * (same remark). An optional *seed* can be added to the value
+ * (this can be cascaded, the seed may come from a previous call
+ * to the helper).
+ *
+ * This is flexible enough to be used in several ways:
+ *
+ * * With *from_size* == 0, *to_size* > 0 and *seed* set to
+ * checksum, it can be used when pushing new dat