summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorMauro Carvalho Chehab <mchehab+huawei@kernel.org>2020-04-28 00:01:36 +0200
committerDavid S. Miller <davem@davemloft.net>2020-04-28 14:39:46 -0700
commitcb3f0d56e153398a035eb22769d2cb2837f29747 (patch)
tree8466ce6d769da4796645d2dfb3c100642fd63d0a
parentaee113427c5d205730b2c1a023661799f41aca23 (diff)
docs: networking: convert filter.txt to ReST
- add SPDX header; - adjust title markup; - mark code blocks and literals as such; - use footnote markup; - mark tables as such; - adjust identation, whitespaces and blank lines; - add to networking/index.rst. Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org> Signed-off-by: David S. Miller <davem@davemloft.net>
-rw-r--r--Documentation/bpf/index.rst4
-rw-r--r--Documentation/networking/filter.rst (renamed from Documentation/networking/filter.txt)868
-rw-r--r--Documentation/networking/index.rst1
-rw-r--r--Documentation/networking/packet_mmap.txt2
-rw-r--r--MAINTAINERS2
-rw-r--r--tools/bpf/bpf_asm.c2
-rw-r--r--tools/bpf/bpf_dbg.c2
7 files changed, 494 insertions, 387 deletions
diff --git a/Documentation/bpf/index.rst b/Documentation/bpf/index.rst
index f99677f3572f..38b4db8be7a2 100644
--- a/Documentation/bpf/index.rst
+++ b/Documentation/bpf/index.rst
@@ -7,7 +7,7 @@ Filter) facility, with a focus on the extended BPF version (eBPF).
This kernel side documentation is still work in progress. The main
textual documentation is (for historical reasons) described in
-`Documentation/networking/filter.txt`_, which describe both classical
+`Documentation/networking/filter.rst`_, which describe both classical
and extended BPF instruction-set.
The Cilium project also maintains a `BPF and XDP Reference Guide`_
that goes into great technical depth about the BPF Architecture.
@@ -59,7 +59,7 @@ Testing and debugging BPF
.. Links:
-.. _Documentation/networking/filter.txt: ../networking/filter.txt
+.. _Documentation/networking/filter.rst: ../networking/filter.txt
.. _man-pages: https://www.kernel.org/doc/man-pages/
.. _bpf(2): http://man7.org/linux/man-pages/man2/bpf.2.html
.. _BPF and XDP Reference Guide: http://cilium.readthedocs.io/en/latest/bpf/
diff --git a/Documentation/networking/filter.txt b/Documentation/networking/filter.rst
index 2f0f8b17dade..a1d3e192b9fa 100644
--- a/Documentation/networking/filter.txt
+++ b/Documentation/networking/filter.rst
@@ -1,3 +1,6 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+=======================================================
Linux Socket Filtering aka Berkeley Packet Filter (BPF)
=======================================================
@@ -42,10 +45,10 @@ displays what is being placed into this structure.
Although we were only speaking about sockets here, BPF in Linux is used
in many more places. There's xt_bpf for netfilter, cls_bpf in the kernel
-qdisc layer, SECCOMP-BPF (SECure COMPuting [1]), and lots of other places
+qdisc layer, SECCOMP-BPF (SECure COMPuting [1]_), and lots of other places
such as team driver, PTP code, etc where BPF is being used.
- [1] Documentation/userspace-api/seccomp_filter.rst
+.. [1] Documentation/userspace-api/seccomp_filter.rst
Original BPF paper:
@@ -59,23 +62,23 @@ Structure
---------
User space applications include <linux/filter.h> which contains the
-following relevant structures:
+following relevant structures::
-struct sock_filter { /* Filter block */
- __u16 code; /* Actual filter code */
- __u8 jt; /* Jump true */
- __u8 jf; /* Jump false */
- __u32 k; /* Generic multiuse field */
-};
+ struct sock_filter { /* Filter block */
+ __u16 code; /* Actual filter code */
+ __u8 jt; /* Jump true */
+ __u8 jf; /* Jump false */
+ __u32 k; /* Generic multiuse field */
+ };
Such a structure is assembled as an array of 4-tuples, that contains
a code, jt, jf and k value. jt and jf are jump offsets and k a generic
-value to be used for a provided code.
+value to be used for a provided code::
-struct sock_fprog { /* Required for SO_ATTACH_FILTER. */
- unsigned short len; /* Number of filter blocks */
- struct sock_filter __user *filter;
-};
+ struct sock_fprog { /* Required for SO_ATTACH_FILTER. */
+ unsigned short len; /* Number of filter blocks */
+ struct sock_filter __user *filter;
+ };
For socket filtering, a pointer to this structure (as shown in
follow-up example) is being passed to the kernel through setsockopt(2).
@@ -83,55 +86,57 @@ follow-up example) is being passed to the kernel through setsockopt(2).
Example
-------
-#include <sys/socket.h>
-#include <sys/types.h>
-#include <arpa/inet.h>
-#include <linux/if_ether.h>
-/* ... */
-
-/* From the example above: tcpdump -i em1 port 22 -dd */
-struct sock_filter code[] = {
- { 0x28, 0, 0, 0x0000000c },
- { 0x15, 0, 8, 0x000086dd },
- { 0x30, 0, 0, 0x00000014 },
- { 0x15, 2, 0, 0x00000084 },
- { 0x15, 1, 0, 0x00000006 },
- { 0x15, 0, 17, 0x00000011 },
- { 0x28, 0, 0, 0x00000036 },
- { 0x15, 14, 0, 0x00000016 },
- { 0x28, 0, 0, 0x00000038 },
- { 0x15, 12, 13, 0x00000016 },
- { 0x15, 0, 12, 0x00000800 },
- { 0x30, 0, 0, 0x00000017 },
- { 0x15, 2, 0, 0x00000084 },
- { 0x15, 1, 0, 0x00000006 },
- { 0x15, 0, 8, 0x00000011 },
- { 0x28, 0, 0, 0x00000014 },
- { 0x45, 6, 0, 0x00001fff },
- { 0xb1, 0, 0, 0x0000000e },
- { 0x48, 0, 0, 0x0000000e },
- { 0x15, 2, 0, 0x00000016 },
- { 0x48, 0, 0, 0x00000010 },
- { 0x15, 0, 1, 0x00000016 },
- { 0x06, 0, 0, 0x0000ffff },
- { 0x06, 0, 0, 0x00000000 },
-};
-
-struct sock_fprog bpf = {
- .len = ARRAY_SIZE(code),
- .filter = code,
-};
-
-sock = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
-if (sock < 0)
- /* ... bail out ... */
-
-ret = setsockopt(sock, SOL_SOCKET, SO_ATTACH_FILTER, &bpf, sizeof(bpf));
-if (ret < 0)
- /* ... bail out ... */
-
-/* ... */
-close(sock);
+::
+
+ #include <sys/socket.h>
+ #include <sys/types.h>
+ #include <arpa/inet.h>
+ #include <linux/if_ether.h>
+ /* ... */
+
+ /* From the example above: tcpdump -i em1 port 22 -dd */
+ struct sock_filter code[] = {
+ { 0x28, 0, 0, 0x0000000c },
+ { 0x15, 0, 8, 0x000086dd },
+ { 0x30, 0, 0, 0x00000014 },
+ { 0x15, 2, 0, 0x00000084 },
+ { 0x15, 1, 0, 0x00000006 },
+ { 0x15, 0, 17, 0x00000011 },
+ { 0x28, 0, 0, 0x00000036 },
+ { 0x15, 14, 0, 0x00000016 },
+ { 0x28, 0, 0, 0x00000038 },
+ { 0x15, 12, 13, 0x00000016 },
+ { 0x15, 0, 12, 0x00000800 },
+ { 0x30, 0, 0, 0x00000017 },
+ { 0x15, 2, 0, 0x00000084 },
+ { 0x15, 1, 0, 0x00000006 },
+ { 0x15, 0, 8, 0x00000011 },
+ { 0x28, 0, 0, 0x00000014 },
+ { 0x45, 6, 0, 0x00001fff },
+ { 0xb1, 0, 0, 0x0000000e },
+ { 0x48, 0, 0, 0x0000000e },
+ { 0x15, 2, 0, 0x00000016 },
+ { 0x48, 0, 0, 0x00000010 },
+ { 0x15, 0, 1, 0x00000016 },
+ { 0x06, 0, 0, 0x0000ffff },
+ { 0x06, 0, 0, 0x00000000 },
+ };
+
+ struct sock_fprog bpf = {
+ .len = ARRAY_SIZE(code),
+ .filter = code,
+ };
+
+ sock = socket(PF_PACKET, SOCK_RAW, htons(ETH_P_ALL));
+ if (sock < 0)
+ /* ... bail out ... */
+
+ ret = setsockopt(sock, SOL_SOCKET, SO_ATTACH_FILTER, &bpf, sizeof(bpf));
+ if (ret < 0)
+ /* ... bail out ... */
+
+ /* ... */
+ close(sock);
The above example code attaches a socket filter for a PF_PACKET socket
in order to let all IPv4/IPv6 packets with port 22 pass. The rest will
@@ -178,15 +183,17 @@ closely modelled after Steven McCanne's and Van Jacobson's BPF paper.
The BPF architecture consists of the following basic elements:
+ ======= ====================================================
Element Description
-
+ ======= ====================================================
A 32 bit wide accumulator
X 32 bit wide X register
M[] 16 x 32 bit wide misc registers aka "scratch memory
- store", addressable from 0 to 15
+ store", addressable from 0 to 15
+ ======= ====================================================
A program, that is translated by bpf_asm into "opcodes" is an array that
-consists of the following elements (as already mentioned):
+consists of the following elements (as already mentioned)::
op:16, jt:8, jf:8, k:32
@@ -201,8 +208,9 @@ and return instructions that are also represented in bpf_asm syntax. This
table lists all bpf_asm instructions available resp. what their underlying
opcodes as defined in linux/filter.h stand for:
+ =========== =================== =====================
Instruction Addressing mode Description
-
+ =========== =================== =====================
ld 1, 2, 3, 4, 12 Load word into A
ldi 4 Load word into A
ldh 1, 2 Load half-word into A
@@ -241,11 +249,13 @@ opcodes as defined in linux/filter.h stand for:
txa Copy X into A
ret 4, 11 Return
+ =========== =================== =====================
The next table shows addressing formats from the 2nd column:
+ =============== =================== ===============================================
Addressing mode Syntax Description
-
+ =============== =================== ===============================================
0 x/%x Register X
1 [k] BHW at byte offset k in the packet
2 [x + k] BHW at the offset X + k in the packet
@@ -259,6 +269,7 @@ The next table shows addressing formats from the 2nd column:
10 x/%x,Lt Jump to Lt if predicate is true
11 a/%a Accumulator A
12 extension BPF extension
+ =============== =================== ===============================================
The Linux kernel also has a couple of BPF extensions that are used along
with the class of load instructions by "overloading" the k argument with
@@ -267,8 +278,9 @@ extensions are loaded into A.
Possible BPF extensions are shown in the following table:
+ =================================== =================================================
Extension Description
-
+ =================================== =================================================
len skb->len
proto skb->protocol
type skb->pkt_type
@@ -285,18 +297,19 @@ Possible BPF extensions are shown in the following table:
vlan_avail skb_vlan_tag_present(skb)
vlan_tpid skb->vlan_proto
rand prandom_u32()
+ =================================== =================================================
These extensions can also be prefixed with '#'.
Examples for low-level BPF:
-** ARP packets:
+**ARP packets**::
ldh [12]
jne #0x806, drop
ret #-1
drop: ret #0
-** IPv4 TCP packets:
+**IPv4 TCP packets**::
ldh [12]
jne #0x800, drop
@@ -305,14 +318,15 @@ Examples for low-level BPF:
ret #-1
drop: ret #0
-** (Accelerated) VLAN w/ id 10:
+**(Accelerated) VLAN w/ id 10**::
ld vlan_tci
jneq #10, drop
ret #-1
drop: ret #0
-** icmp random packet sampling, 1 in 4
+**icmp random packet sampling, 1 in 4**:
+
ldh [12]
jne #0x800, drop
ldb [23]
@@ -324,7 +338,7 @@ Examples for low-level BPF:
ret #-1
drop: ret #0
-** SECCOMP filter example:
+**SECCOMP filter example**::
ld [4] /* offsetof(struct seccomp_data, arch) */
jne #0xc000003e, bad /* AUDIT_ARCH_X86_64 */
@@ -345,18 +359,18 @@ Examples for low-level BPF:
The above example code can be placed into a file (here called "foo"), and
then be passed to the bpf_asm tool for generating opcodes, output that xt_bpf
and cls_bpf understands and can directly be loaded with. Example with above
-ARP code:
+ARP code::
-$ ./bpf_asm foo
-4,40 0 0 12,21 0 1 2054,6 0 0 4294967295,6 0 0 0,
+ $ ./bpf_asm foo
+ 4,40 0 0 12,21 0 1 2054,6 0 0 4294967295,6 0 0 0,
-In copy and paste C-like output:
+In copy and paste C-like output::
-$ ./bpf_asm -c foo
-{ 0x28, 0, 0, 0x0000000c },
-{ 0x15, 0, 1, 0x00000806 },
-{ 0x06, 0, 0, 0xffffffff },
-{ 0x06, 0, 0, 0000000000 },
+ $ ./bpf_asm -c foo
+ { 0x28, 0, 0, 0x0000000c },
+ { 0x15, 0, 1, 0x00000806 },
+ { 0x06, 0, 0, 0xffffffff },
+ { 0x06, 0, 0, 0000000000 },
In particular, as usage with xt_bpf or cls_bpf can result in more complex BPF
filters that might not be obvious at first, it's good to test filters before
@@ -365,9 +379,9 @@ bpf_dbg under tools/bpf/ in the kernel source directory. This debugger allows
for testing BPF filters against given pcap files, single stepping through the
BPF code on the pcap's packets and to do BPF machine register dumps.
-Starting bpf_dbg is trivial and just requires issuing:
+Starting bpf_dbg is trivial and just requires issuing::
-# ./bpf_dbg
+ # ./bpf_dbg
In case input and output do not equal stdin/stdout, bpf_dbg takes an
alternative stdin source as a first argument, and an alternative stdout
@@ -381,84 +395,100 @@ Interaction in bpf_dbg happens through a shell that also has auto-completion
support (follow-up example commands starting with '>' denote bpf_dbg shell).
The usual workflow would be to ...
-> load bpf 6,40 0 0 12,21 0 3 2048,48 0 0 23,21 0 1 1,6 0 0 65535,6 0 0 0
+* load bpf 6,40 0 0 12,21 0 3 2048,48 0 0 23,21 0 1 1,6 0 0 65535,6 0 0 0
Loads a BPF filter from standard output of bpf_asm, or transformed via
- e.g. `tcpdump -iem1 -ddd port 22 | tr '\n' ','`. Note that for JIT
+ e.g. ``tcpdump -iem1 -ddd port 22 | tr '\n' ','``. Note that for JIT
debugging (next section), this command creates a temporary socket and
loads the BPF code into the kernel. Thus, this will also be useful for
JIT developers.
-> load pcap foo.pcap
+* load pcap foo.pcap
+
Loads standard tcpdump pcap file.
-> run [<n>]
+* run [<n>]
+
bpf passes:1 fails:9
Runs through all packets from a pcap to account how many passes and fails
the filter will generate. A limit of packets to traverse can be given.
-> disassemble
-l0: ldh [12]
-l1: jeq #0x800, l2, l5
-l2: ldb [23]
-l3: jeq #0x1, l4, l5
-l4: ret #0xffff
-l5: ret #0
+* disassemble::
+
+ l0: ldh [12]
+ l1: jeq #0x800, l2, l5
+ l2: ldb [23]
+ l3: jeq #0x1, l4, l5
+ l4: ret #0xffff
+ l5: ret #0
+
Prints out BPF code disassembly.
-> dump
-/* { op, jt, jf, k }, */
-{ 0x28, 0, 0, 0x0000000c },
-{ 0x15, 0, 3, 0x00000800 },
-{ 0x30, 0, 0, 0x00000017 },
-{ 0x15, 0, 1, 0x00000001 },
-{ 0x06, 0, 0, 0x0000ffff },
-{ 0x06, 0, 0, 0000000000 },
+* dump::
+
+ /* { op, jt, jf, k }, */
+ { 0x28, 0, 0, 0x0000000c },
+ { 0x15, 0, 3, 0x00000800 },
+ { 0x30, 0, 0, 0x00000017 },
+ { 0x15, 0, 1, 0x00000001 },
+ { 0x06, 0, 0, 0x0000ffff },
+ { 0x06, 0, 0, 0000000000 },
+
Prints out C-style BPF code dump.
-> breakpoint 0
-breakpoint at: l0: ldh [12]
-> breakpoint 1
-breakpoint at: l1: jeq #0x800, l2, l5
+* breakpoint 0::
+
+ breakpoint at: l0: ldh [12]
+
+* breakpoint 1::
+
+ breakpoint at: l1: jeq #0x800, l2, l5
+
...
+
Sets breakpoints at particular BPF instructions. Issuing a `run` command
will walk through the pcap file continuing from the current packet and
break when a breakpoint is being hit (another `run` will continue from
the currently active breakpoint executing next instructions):
- > run
- -- register dump --
- pc: [0] <-- program counter
- code: [40] jt[0] jf[0] k[12] <-- plain BPF code of current instruction
- curr: l0: ldh [12] <-- disassembly of current instruction
- A: [00000000][0] <-- content of A (hex, decimal)
- X: [00000000][0] <-- content of X (hex, decimal)
- M[0,15]: [00000000][0] <-- folded content of M (hex, decimal)
- -- packet dump -- <-- Current packet from pcap (hex)
- len: 42
- 0: 00 19 cb 55 55 a4 00 14 a4 43 78 69 08 06 00 01
- 16: 08 00 06 04 00 01 00 14 a4 43 78 69 0a 3b 01 26
- 32: 00 00 00 00 00 00 0a 3b 01 01
- (breakpoint)
- >
-
-> breakpoint
-breakpoints: 0 1
- Prints currently set breakpoints.
-
-> step [-<n>, +<n>]
+ * run::
+
+ -- register dump --
+ pc: [0] <-- program counter
+ code: [40] jt[0] jf[0] k[12] <-- plain BPF code of current instruction
+ curr: l0: ldh [12] <-- disassembly of current instruction
+ A: [00000000][0] <-- content of A (hex, decimal)
+ X: [00000000][0] <-- content of X (hex, decimal)
+ M[0,15]: [00000000][0] <-- folded content of M (hex, decimal)
+ -- packet dump -- <-- Current packet from pcap (hex)
+ len: 42
+ 0: 00 19 cb 55 55 a4 00 14 a4 43 78 69 08 06 00 01
+ 16: 08 00 06 04 00 01 00 14 a4 43 78 69 0a 3b 01 26
+ 32: 00 00 00 00 00 00 0a 3b 01 01
+ (breakpoint)
+ >
+
+ * breakpoint::
+
+ breakpoints: 0 1
+
+ Prints currently set breakpoints.
+
+* step [-<n>, +<n>]
+
Performs single stepping through the BPF program from the current pc
offset. Thus, on each step invocation, above register dump is issued.
This can go forwards and backwards in time, a plain `step` will break
on the next BPF instruction, thus +1. (No `run` needs to be issued here.)
-> select <n>
+* select <n>
+
Selects a given packet from the pcap file to continue from. Thus, on
the next `run` or `step`, the BPF program is being evaluated against
the user pre-selected packet. Numbering starts just as in Wireshark
with index 1.
-> quit
-#
+* quit
+
Exits bpf_dbg.
JIT compiler
@@ -468,23 +498,23 @@ The Linux kernel has a built-in BPF JIT compiler for x86_64, SPARC,
PowerPC, ARM, ARM64, MIPS, RISC-V and s390 and can be enabled through
CONFIG_BPF_JIT. The JIT compiler is transparently invoked for each
attached filter from user space or for internal kernel users if it has
-been previously enabled by root:
+been previously enabled by root::
echo 1 > /proc/sys/net/core/bpf_jit_enable
For JIT developers, doing audits etc, each compile run can output the generated
-opcode image into the kernel log via:
+opcode image into the kernel log via::
echo 2 > /proc/sys/net/core/bpf_jit_enable
-Example output from dmesg:
+Example output from dmesg::
-[ 3389.935842] flen=6 proglen=70 pass=3 image=ffffffffa0069c8f
-[ 3389.935847] JIT code: 00000000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 68
-[ 3389.935849] JIT code: 00000010: 44 2b 4f 6c 4c 8b 87 d8 00 00 00 be 0c 00 00 00
-[ 3389.935850] JIT code: 00000020: e8 1d 94 ff e0 3d 00 08 00 00 75 16 be 17 00 00
-[ 3389.935851] JIT code: 00000030: 00 e8 28 94 ff e0 83 f8 01 75 07 b8 ff ff 00 00
-[ 3389.935852] JIT code: 00000040: eb 02 31 c0 c9 c3
+ [ 3389.935842] flen=6 proglen=70 pass=3 image=ffffffffa0069c8f
+ [ 3389.935847] JIT code: 00000000: 55 48 89 e5 48 83 ec 60 48 89 5d f8 44 8b 4f 68
+ [ 3389.935849] JIT code: 00000010: 44 2b 4f 6c 4c 8b 87 d8 00 00 00 be 0c 00 00 00
+ [ 3389.935850] JIT code: 00000020: e8 1d 94 ff e0 3d 00 08 00 00 75 16 be 17 00 00
+ [ 3389.935851] JIT code: 00000030: 00 e8 28 94 ff e0 83 f8 01 75 07 b8 ff ff 00 00
+ [ 3389.935852] JIT code: 00000040: eb 02 31 c0 c9 c3
When CONFIG_BPF_JIT_ALWAYS_ON is enabled, bpf_jit_enable is permanently set to 1 and
setting any other value than that will return in failure. This is even the case for
@@ -493,78 +523,78 @@ is discouraged and introspection through bpftool (under tools/bpf/bpftool/) is t
generally recommended approach instead.
In the kernel source tree under tools/bpf/, there's bpf_jit_disasm for
-generating disassembly out of the kernel log's hexdump:
-
-# ./bpf_jit_disasm
-70 bytes emitted from JIT compiler (pass:3, flen:6)
-ffffffffa0069c8f + <x>:
- 0: push %rbp
- 1: mov %rsp,%rbp
- 4: sub $0x60,%rsp
- 8: mov %rbx,-0x8(%rbp)
- c: mov 0x68(%rdi),%r9d
- 10: sub 0x6c(%rdi),%r9d
- 14: mov 0xd8(%rdi),%r8
- 1b: mov $0xc,%esi
- 20: callq 0xffffffffe0ff9442
- 25: cmp $0x800,%eax
- 2a: jne 0x0000000000000042
- 2c: mov $0x17,%esi
- 31: callq 0xffffffffe0ff945e
- 36: cmp $0x1,%eax
- 39: jne 0x0000000000000042
- 3b: mov $0xffff,%eax
- 40: jmp 0x0000000000000044
- 42: xor %eax,%eax
- 44: leaveq
- 45: retq
-
-Issuing option `-o` will "annotate" opcodes to resulting assembler
-instructions, which can be very useful for JIT developers:
-
-# ./bpf_jit_disasm -o
-70 bytes emitted from JIT compiler (pass:3, flen:6)
-ffffffffa0069c8f + <x>:
- 0: push %rbp
- 55
- 1: mov %rsp,%rbp
- 48 89 e5
- 4: sub $0x60,%rsp
- 48 83 ec 60
- 8: mov %rbx,-0x8(%rbp)
- 48 89 5d f8
- c: mov 0x68(%rdi),%r9d
- 44 8b 4f 68
- 10: sub 0x6c(%rdi),%r9d
- 44 2b 4f 6c
- 14: mov 0xd8(%rdi),%r8
- 4c 8b 87 d8 00 00 00
- 1b: mov $0xc,%esi
- be 0c 00 00 00
- 20: callq 0xffffffffe0ff9442
- e8 1d 94 ff e0
- 25: cmp $0x800,%eax
- 3d 00 08 00 00
- 2a: jne 0x0000000000000042
- 75 16
- 2c: mov $0x17,%esi
- be 17 00 00 00
- 31: callq 0xffffffffe0ff945e
- e8 28 94 ff e0
- 36: cmp $0x1,%eax
- 83 f8 01
- 39: jne 0x0000000000000042
- 75 07
- 3b: mov $0xffff,%eax
- b8 ff ff 00 00
- 40: jmp 0x0000000000000044
- eb 02
- 42: xor %eax,%eax
- 31 c0
- 44: leaveq
- c9
- 45: retq
- c3
+generating disassembly out of the kernel log's hexdump::
+
+ # ./bpf_jit_disasm
+ 70 bytes emitted from JIT compiler (pass:3, flen:6)
+ ffffffffa0069c8f + <x>:
+ 0: push %rbp
+ 1: mov %rsp,%rbp
+ 4: sub $0x60,%rsp
+ 8: mov %rbx,-0x8(%rbp)
+ c: mov 0x68(%rdi),%r9d
+ 10: sub 0x6c(%rdi),%r9d
+ 14: mov 0xd8(%rdi),%r8
+ 1b: mov $0xc,%esi
+ 20: callq 0xffffffffe0ff9442
+ 25: cmp $0x800,%eax
+ 2a: jne 0x0000000000000042
+ 2c: mov $0x17,%esi
+ 31: callq 0xffffffffe0ff945e
+ 36: cmp $0x1,%eax
+ 39: jne 0x0000000000000042
+ 3b: mov $0xffff,%eax
+ 40: jmp 0x0000000000000044
+ 42: xor %eax,%eax
+ 44: leaveq
+ 45: retq
+
+ Issuing option `-o` will "annotate" opcodes to resulting assembler
+ instructions, which can be very useful for JIT developers:
+
+ # ./bpf_jit_disasm -o
+ 70 bytes emitted from JIT compiler (pass:3, flen:6)
+ ffffffffa0069c8f + <x>:
+ 0: push %rbp
+ 55
+ 1: mov %rsp,%rbp
+ 48 89 e5
+ 4: sub $0x60,%rsp
+ 48 83 ec 60
+ 8: mov %rbx,-0x8(%rbp)
+ 48 89 5d f8
+ c: mov 0x68(%rdi),%r9d
+ 44 8b 4f 68
+ 10: sub 0x6c(%rdi),%r9d
+ 44 2b 4f 6c
+ 14: mov 0xd8(%rdi),%r8
+ 4c 8b 87 d8 00 00 00
+ 1b: mov $0xc,%esi
+ be 0c 00 00 00
+ 20: callq 0xffffffffe0ff9442
+ e8 1d 94 ff e0
+ 25: cmp $0x800,%eax
+ 3d 00 08 00 00
+ 2a: jne 0x0000000000000042
+ 75 16
+ 2c: mov $0x17,%esi
+ be 17 00 00 00
+ 31: callq 0xffffffffe0ff945e
+ e8 28 94 ff e0
+ 36: cmp $0x1,%eax
+ 83 f8 01
+ 39: jne 0x0000000000000042
+ 75 07
+ 3b: mov $0xffff,%eax
+ b8 ff ff 00 00
+ 40: jmp 0x0000000000000044
+ eb 02
+ 42: xor %eax,%eax
+ 31 c0
+ 44: leaveq
+ c9
+ 45: retq
+ c3
For BPF JIT developers, bpf_jit_disasm, bpf_asm and bpf_dbg provides a useful
toolchain for developing and testing the kernel's JIT compiler.
@@ -663,9 +693,9 @@ Some core changes of the new internal format:
- Conditional jt/jf targets replaced with jt/fall-through:
- While the original design has constructs such as "if (cond) jump_true;
- else jump_false;", they are being replaced into alternative constructs like
- "if (cond) jump_true; /* else fall-through */".
+ While the original design has constructs such as ``if (cond) jump_true;
+ else jump_false;``, they are being replaced into alternative constructs like
+ ``if (cond) jump_true; /* else fall-through */``.
- Introduces bpf_call insn and register passing convention for zero overhead
calls from/to other kernel functions:
@@ -684,32 +714,32 @@ Some core changes of the new internal format:
a return value of the function. Since R6 - R9 are callee saved, their state
is preserved across the call.
- For example, consider three C functions:
+ For example, consider three C functions::
- u64 f1() { return (*_f2)(1); }
- u64 f2(u64 a) { return f3(a + 1, a); }
- u64 f3(u64 a, u64 b) { return a - b; }
+ u64 f1() { return (*_f2)(1); }
+ u64 f2(u64 a) { return f3(a + 1, a); }
+ u64 f3(u64 a, u64 b) { return a - b; }
- GCC can compile f1, f3 into x86_64:
+ GCC can compile f1, f3 into x86_64::
- f1:
- movl $1, %edi
- movq _f2(%rip), %rax
- jmp *%rax
- f3:
- movq %rdi, %rax
- subq %rsi, %rax
- ret
+ f1:
+ movl $1, %edi
+ movq _f2(%rip), %rax
+ jmp *%rax
+ f3:
+ movq %rdi, %rax
+ subq %rsi, %rax
+ ret
- Function f2 in eBPF may look like:
+ Function f2 in eBPF may look like::
- f2:
- bpf_mov R2, R1
- bpf_add R1, 1
- bpf_call f3
- bpf_exit
+ f2:
+ bpf_mov R2, R1
+ bpf_add R1, 1
+ bpf_call f3
+ bpf_exit
- If f2 is JITed and the pointer stored to '_f2'. The calls f1 -> f2 -> f3 and
+ If f2 is JITed and the pointer stored to ``_f2``. The calls f1 -> f2 -> f3 and
returns will be seamless. Without JIT, __bpf_prog_run() interpreter needs to
be used to call into f2.
@@ -722,6 +752,8 @@ Some core changes of the new internal format:
On 64-bit architectures all register map to HW registers one to one. For
example, x86_64 JIT compiler can map them as ...
+ ::
+
R0 - rax
R1 - rdi
R2 - rsi
@@ -737,7 +769,7 @@ Some core changes of the new internal format:
... since x86_64 ABI mandates rdi, rsi, rdx, rcx, r8, r9 for argument passing
and rbx, r12 - r15 are callee saved.
- Then the following internal BPF pseudo-program:
+ Then the following internal BPF pseudo-program::
bpf_mov R6, R1 /* save ctx */
bpf_mov R2, 2
@@ -755,7 +787,7 @@ Some core changes of the new internal format:
bpf_add R0, R7
bpf_exit
- After JIT to x86_64 may look like:
+ After JIT to x86_64 may look like::
push %rbp
mov %rsp,%rbp
@@ -781,21 +813,21 @@ Some core changes of the new internal format:
leaveq
retq
- Which is in this example equivalent in C to:
+ Which is in this example equivalent in C to::
u64 bpf_filter(u64 ctx)
{
- return foo(ctx, 2, 3, 4, 5) + bar(ctx, 6, 7, 8, 9);
+ return foo(ctx, 2, 3, 4, 5) + bar(ctx, 6, 7, 8, 9);
}
In-kernel functions foo() and bar() with prototype: u64 (*)(u64 arg1, u64
arg2, u64 arg3, u64 arg4, u64 arg5); will receive arguments in proper
- registers and place their return value into '%rax' which is R0 in eBPF.
+ registers and place their return value into ``%rax`` which is R0 in eBPF.
Prologue and epilogue are emitted by JIT and are implicit in the
interpreter. R0-R5 are scratch registers, so eBPF program needs to preserve
them across the calls as defined by calling convention.
- For example the following program is invalid:
+ For example the following program is invalid::
bpf_mov R1, 1
bpf_call foo
@@ -814,7 +846,7 @@ The input context pointer for invoking the interpreter function is generic,
its content is defined by a specific use case. For seccomp register R1 points
to seccomp_data, for converted BPF filters R1 points to a skb.
-A program, that is translated internally consists of the following elements:
+A program, that is translated internally consists of the following elements::
op:16, jt:8, jf:8, k:32 ==> op:8, dst_reg:4, src_reg:4, off:16, imm:32
@@ -824,7 +856,7 @@ instructions must be multiple of 8 bytes to preserve backward compatibility.
Internal BPF is a general purpose RISC instruction set. Not every register and
every instruction are used during translation from original BPF to new format.
-For example, socket filters are not using 'exclusive add' instruction, but
+For example, socket filters are not using ``exclusive add`` instruction, but
tracing filters may do to maintain counters of events, for example. Register R9
is not used by socket filters either, but more complex filters may be running
out of registers and would have to resort to spill/fill to stack.
@@ -849,7 +881,7 @@ eBPF opcode encoding
eBPF is reusing most of the opcode encoding from classic to simplify conversion
of classic BPF to eBPF. For arithmetic and jump instructions the 8-bit 'code'
-field is divided into three parts:
+field is divided into three parts::
+----------------+--------+--------------------+
| 4 bits | 1 bit | 3 bits |
@@ -859,8 +891,9 @@ field is divided into three parts:
Three LSB bits store instruction class which is one of:
- Classic BPF classes: eBPF classes:
-
+ =================== ===============
+ Classic BPF classes eBPF classes
+ =================== ===============
BPF_LD 0x00 BPF_LD 0x00
BPF_LDX 0x01 BPF_LDX 0x01
BPF_ST 0x02 BPF_ST 0x02
@@ -869,25 +902,28 @@ Three LSB bits store instruction class which is one of:
BPF_JMP 0x05 BPF_JMP 0x05
BPF_RET 0x06 BPF_JMP32 0x06
BPF_MISC 0x07 BPF_ALU64 0x07
+ =================== ===============
When BPF_CLASS(code) == BPF_ALU or BPF_JMP, 4th bit encodes source operand ...
- BPF_K 0x00
- BPF_X 0x08
+ ::
+
+ BPF_K 0x00
+ BPF_X 0x08
- * in classic BPF, this means:
+ * in classic BPF, this means::
- BPF_SRC(code) == BPF_X - use register X as source operand
- BPF_SRC(code) == BPF_K - use 32-bit immediate as source operand
+ BPF_SRC(code) == BPF_X - use register X as source operand
+ BPF_SRC(code) == BPF_K - use 32-bit immediate as source operand
- * in eBPF, this means:
+ * in eBPF, this means::
- BPF_SRC(code) == BPF_X - use 'src_reg' register as source operand
- BPF_SRC(code) == BPF_K - use 32-bit immediate as source operand
+ BPF_SRC(code) == BPF_X - use 'src_reg' register as source operand
+ BPF_SRC(code) == BPF_K - use 32-bit immediate as source operand
... and four MSB bits store operation code.
-If BPF_CLASS(code) == BPF_ALU or BPF_ALU64 [ in eBPF ], BPF_OP(code) is one of:
+If BPF_CLASS(code) == BPF_ALU or BPF_ALU64 [ in eBPF ], BPF_OP(code) is one of::
BPF_ADD 0x00
BPF_SUB 0x10
@@ -904,7 +940,7 @@ If BPF_CLASS(code) == BPF_ALU or BPF_ALU64 [ in eBPF ], BPF_OP(code) is one of:
BPF_ARSH 0xc0 /* eBPF only: sign extending shift right */
BPF_END 0xd0 /* eBPF only: endianness conversion */
-If BPF_CLASS(code) == BPF_JMP or BPF_JMP32 [ in eBPF ], BPF_OP(code) is one of:
+If BPF_CLASS(code) == BPF_JMP or BPF_JMP32 [ in eBPF ], BPF_OP(code) is one of::
BPF_JA 0x00 /* BPF_JMP only */
BPF_JEQ 0x10
@@ -934,7 +970,7 @@ exactly the same operations as BPF_ALU, but with 64-bit wide operands
instead. So BPF_ADD | BPF_X | BPF_ALU64 means 64-bit addition, i.e.:
dst_reg = dst_reg + src_reg
-Classic BPF wastes the whole BPF_RET class to represent a single 'ret'
+Classic BPF wastes the whole BPF_RET class to represent a single ``ret``
operation. Classic BPF_RET | BPF_K means copy imm32 into return register
and perform function exit. eBPF is modeled to match CPU, so BPF_JMP | BPF_EXIT
in eBPF means function exit only. The eBPF program needs to store return
@@ -942,7 +978,7 @@ value into register R0 before doing a BPF_EXIT. Class 6 in eBPF is used as
BPF_JMP32 to mean exactly the same operations as BPF_JMP, but with 32-bit wide
operands for the comparisons instead.
-For load and store instructions the 8-bit 'code' field is divided as:
+For load and store instructions the 8-bit 'code' field is divided as::
+--------+--------+-------------------+
| 3 bits | 2 bits | 3 bits |
@@ -952,19 +988,21 @@ For load and store instructions the 8-bit 'code' field is divided as:
Size modifier is one of ...
+::
+
BPF_W 0x00 /* word */
BPF_H 0x08 /* half word */
BPF_B 0x10 /* byte */
BPF_DW 0x18 /* eBPF only, double word */
-... which encodes size of load/store operation:
+... which encodes size of load/store operation::
B - 1 byte
H - 2 byte
W - 4 byte
DW - 8 byte (eBPF only)
-Mode modifier is one of:
+Mode modifier is one of::
BPF_IMM 0x00 /* used for 32-bit mov in classic BPF and 64-bit in eBPF */
BPF_ABS 0x20
@@ -979,7 +1017,7 @@ eBPF has two non-generic instructions: (BPF_ABS | <size> | BPF_LD) and
They had to be carried over from classic to have strong performance of
socket filters running in eBPF interpreter. These instructions can only
-be used when interpreter context is a pointer to 'struct sk_buff' and
+be used when interpreter context is a pointer to ``struct sk_buff`` and
have seven implicit operands. Register R6 is an implicit input that must
contain pointer to sk_buff. Register R0 is an implicit output which contains
the data fetched from the packet. Registers R1-R5 are scratch registers
@@ -992,26 +1030,26 @@ the interpreter will abort the execution of the program. JIT compilers
therefore must preserve this property. src_reg and imm32 fields are
explicit inputs to these instructions.
-For example:
+For example::
BPF_IND | BPF_W | BPF_LD means:
R0 = ntohl(*(u32 *) (((struct sk_buff *) R6)->data + src_reg + imm32))
and R1 - R5 were scratched.
-Unlike classic BPF instruction set, eBPF has generic load/store operations:
+Unlike classic BPF instruction set, eBPF has generic load/store operations::
-BPF_MEM | <size> | BPF_STX: *(size *) (dst_reg + off) = src_reg
-BPF_MEM | <size> | BPF_ST: *(size *) (dst_reg + off) = imm32
-BPF_MEM | <size> | BPF_LDX: dst_reg = *(size *) (src_reg + off)
-BPF_XADD | BPF_W | BPF_STX: lock xadd *(u32 *)(dst_reg + off16) += src_reg
-BPF_XADD | BPF_DW | BPF_STX: lock xadd *(u64 *)(dst_reg + off16) += src_reg
+ BPF_MEM | <size> | BPF_STX: *(size *) (dst_reg + off) = src_reg
+ BPF_MEM | <size> | BPF_ST: *(size *) (dst_reg + off) = imm32
+ BPF_MEM | <size> | BPF_LDX: dst_reg = *(size *) (src_reg + off)
+ BPF_XADD | BPF_W | BPF_STX: lock xadd *(u32 *)(dst_reg + off16) += src_reg
+ BPF_XADD | BPF_DW | BPF_STX: lock xadd *(u64 *)(dst_reg + off16) += src_reg
Where size is one of: BPF_B or BPF_H or BPF_W or BPF_DW. Note that 1 and
2 byte atomic increments are not supported.
eBPF has one 16-byte instruction: BPF_LD | BPF_DW | BPF_IMM which consists
-of two consecutive 'struct bpf_insn' 8-byte blocks and interpreted as single
+of two consecutive ``struct bpf_insn`` 8-byte blocks and interpreted as single
instruction that loads 64-bit immediate value into a dst_reg.
Classic BPF has similar instruction: BPF_LD | BPF_W | BPF_IMM which loads
32-bit immediate value into a register.
@@ -1037,38 +1075,48 @@ since addition of two valid pointers makes invalid pointer.
(In 'secure' mode verifier will reject any type of pointer arithmetic to make
sure that kernel addresses don't leak to unprivileged users)
-If register was never written to, it's not readable:
+If register was never written to, it's not re