// Code generated by gen_sort_variants.go; DO NOT EDIT. // Copyright 2022 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package slices // insertionSortLessFunc sorts data[a:b] using insertion sort. func insertionSortLessFunc[Elem any](data []Elem, a, b int, less func(a, b Elem) bool) { for i := a + 1; i < b; i++ { for j := i; j > a && less(data[j], data[j-1]); j-- { data[j], data[j-1] = data[j-1], data[j] } } } // siftDownLessFunc implements the heap property on data[lo:hi]. // first is an offset into the array where the root of the heap lies. func siftDownLessFunc[Elem any](data []Elem, lo, hi, first int, less func(a, b Elem) bool) { root := lo for { child := 2*root + 1 if child >= hi { break } if child+1 < hi && less(data[first+child], data[first+child+1]) { child++ } if !less(data[first+root], data[first+child]) { return } data[first+root], data[first+child] = data[first+child], data[first+root] root = child } } func heapSortLessFunc[Elem any](data []Elem, a, b int, less func(a, b Elem) bool) { first := a lo := 0 hi := b - a // Build heap with greatest element at top. for i := (hi - 1) / 2; i >= 0; i-- { siftDownLessFunc(data, i, hi, first, less) } // Pop elements, largest first, into end of data. for i := hi - 1; i >= 0; i-- { data[first], data[first+i] = data[first+i], data[first] siftDownLessFunc(data, lo, i, first, less) } } // Quicksort, loosely following Bentley and McIlroy, // "Engineering a Sort Function" SP&E November 1993. // medianOfThreeLessFunc moves the median of the three values data[m0], data[m1], data[m2] into data[m1]. func medianOfThreeLessFunc[Elem any](data []Elem, m1, m0, m2 int, less func(a, b Elem) bool) { // sort 3 elements if less(data[m1], data[m0]) { data[m1], data[m0] = data[m0], data[m1] } // data[m0] <= data[m1] if less(data[m2], data[m1]) { data[m2], data[m1] = data[m1], data[m2] // data[m0] <= data[m2] && data[m1] < data[m2] if less(data[m1], data[m0]) { data[m1], data[m0] = data[m0], data[m1] } } // now data[m0] <= data[m1] <= data[m2] } func swapRangeLessFunc[Elem any](data []Elem, a, b, n int, less func(a, b Elem) bool) { for i := 0; i < n; i++ { data[a+i], data[b+i] = data[b+i], data[a+i] } } func doPivotLessFunc[Elem any](data []Elem, lo, hi int, less func(a, b Elem) bool) (midlo, midhi int) { m := int(uint(lo+hi) >> 1) // Written like this to avoid integer overflow. if hi-lo > 40 { // Tukey's "Ninther" median of three medians of three. s := (hi - lo) / 8 medianOfThreeLessFunc(data, lo, lo+s, lo+2*s, less) medianOfThreeLessFunc(data, m, m-s, m+s, less) medianOfThreeLessFunc(data, hi-1, hi-1-s, hi-1-2*s, less) } medianOfThreeLessFunc(data, lo, m, hi-1, less) // Invariants are: // data[lo] = pivot (set up by ChoosePivot) // data[lo < i < a] < pivot // data[a <= i < b] <= pivot // data[b <= i < c] unexamined // data[c <= i < hi-1] > pivot // data[hi-1] >= pivot pivot := lo a, c := lo+1, hi-1 for ; a < c && less(data[a], data[pivot]); a++ { } b := a for { for ; b < c && !less(data[pivot], data[b]); b++ { // data[b] <= pivot } for ; b < c && less(data[pivot], data[c-1]); c-- { // data[c-1] > pivot } if b >= c { break } // data[b] > pivot; data[c-1] <= pivot data[b], data[c-1] = data[c-1], data[b] b++ c-- } // If hi-c<3 then there are duplicates (by property of median of nine). // Let's be a bit more conservative, and set border to 5. protect := hi-c < 5 if !protect && hi-c < (hi-lo)/4 { // Lets test some points for equality to pivot dups := 0 if !less(data[pivot], data[hi-1]) { // data[hi-1] = pivot data[c], data[hi-1] = data[hi-1], data[c] c++ dups++ } if !less(data[b-1], data[pivot]) { // data[b-1] = pivot b-- dups++ } // m-lo = (hi-lo)/2 > 6 // b-lo > (hi-lo)*3/4-1 > 8 // ==> m < b ==> data[m] <= pivot if !less(data[m], data[pivot]) { // data[m] = pivot data[m], data[b-1] = data[b-1], data[m] b-- dups++ } // if at least 2 points are equal to pivot, assume skewed distribution protect = dups > 1 } if protect { // Protect against a lot of duplicates // Add invariant: // data[a <= i < b] unexamined // data[b <= i < c] = pivot for { for ; a < b && !less(data[b-1], data[pivot]); b-- { // data[b] == pivot } for ; a < b && less(data[a], data[pivot]); a++ { // data[a] < pivot } if a >= b { break } // data[a] == pivot; data[b-1] < pivot data[a], data[b-1] = data[b-1], data[a] a++ b-- } } // Swap pivot into middle data[pivot], data[b-1] = data[b-1], data[pivot] return b - 1, c } func quickSortLessFunc[Elem any](data []Elem, a, b, maxDepth int, less func(a, b Elem) bool) { for b-a > 12 { // Use ShellSort for slices <= 12 elements if maxDepth == 0 { heapSortLessFunc(data, a, b, less) return } maxDepth-- mlo, mhi := doPivotLessFunc(data, a, b, less) // Avoiding recursion on the larger subproblem guarantees // a stack depth of at most lg(b-a). if mlo-a < b-mhi { quickSortLessFunc(data, a, mlo, maxDepth, less) a = mhi // i.e., quickSortLessFunc(data, mhi, b) } else { quickSortLessFunc(data, mhi, b, maxDepth, less) b = mlo // i.e., quickSortLessFunc(data, a, mlo) } } if b-a > 1 { // Do ShellSort pass with gap 6 // It could be written in this simplified form cause b-a <= 12 for i := a + 6; i < b; i++ { if less(data[i], data[i-6]) { data[i], data[i-6] = data[i-6], data[i] } } insertionSortLessFunc(data, a, b, less) } } func stableLessFunc[Elem any](data []Elem, n int, less func(a, b Elem) bool) { blockSize := 20 // must be > 0 a, b := 0, blockSize for b <= n { insertionSortLessFunc(data, a, b, less) a = b b += blockSize } insertionSortLessFunc(data, a, n, less) for blockSize < n { a, b = 0, 2*blockSize for b <= n { symMergeLessFunc(data, a, a+blockSize, b, less) a = b b += 2 * blockSize } if m := a + blockSize; m < n { symMergeLessFunc(data, a, m, n, less) } blockSize *= 2 } } // symMergeLessFunc merges the two sorted subsequences data[a:m] and data[m:b] using // the SymMerge algorithm from Pok-Son Kim and Arne Kutzner, "Stable Minimum // Storage Merging by Symmetric Comparisons", in Susanne Albers and Tomasz // Radzik, editors, Algorithms - ESA 2004, volume 3221 of Lecture Notes in // Computer Science, pages 714-723. Springer, 2004. // // Let M = m-a and N = b-n. Wolog M < N. // The recursion depth is bound by ceil(log(N+M)). // The algorithm needs O(M*log(N/M + 1)) calls to data.Less. // The algorithm needs O((M+N)*log(M)) calls to data.Swap. // // The paper gives O((M+N)*log(M)) as the number of assignments assuming a // rotation algorithm which uses O(M+N+gcd(M+N)) assignments. The argumentation // in the paper carries through for Swap operations, especially as the block // swapping rotate uses only O(M+N) Swaps. // // symMerge assumes non-degenerate arguments: a < m && m < b. // Having the caller check this condition eliminates many leaf recursion calls, // which improves performance. func symMergeLessFunc[Elem any](data []Elem, a, m, b int, less func(a, b Elem) bool) { // Avoid unnecessary recursions of symMerge // by direct insertion of data[a] into data[m:b] // if data[a:m] only contains one element. if m-a == 1 { // Use binary search to find the lowest index i // such that data[i] >= data[a] for m <= i < b. // Exit the search loop with i == b in case no such index exists. i := m j := b for i < j { h := int(uint(i+j) >> 1) if less(data[h], data[a]) { i = h + 1 } else { j = h } } // Swap values until data[a] reaches the position before i. for k := a; k < i-1; k++ { data[k], data[k+1] = data[k+1], data[k] } return } // Avoid unnecessary recursions of symMerge // by direct insertion of data[m] into data[a:m] // if data[m:b] only contains one element. if b-m == 1 { // Use binary search to find the lowest index i // such that data[i] > data[m] for a <= i < m. // Exit the search loop with i == m in case no such index exists. i := a j := m for i < j { h := int(uint(i+j) >> 1) if !less(data[m], data[h]) { i = h + 1 } else { j = h } } // Swap values until data[m] reaches the position i. for k := m; k > i; k-- { data[k], data[k-1] = data[k-1], data[k] } return } mid := int(uint(a+b) >> 1) n := mid + m var start, r int if m > mid { start = n - b r = mid } else { start = a r = m } p := n - 1 for start < r { c := int(uint(start+r) >> 1) if !less(data[p-c], data[c]) { start = c + 1 } else { r = c } } end := n - start if start < m && m < end { rotateLessFunc(data, start, m, end, less) } if a < start && start < mid { symMergeLessFunc(data, a, start, mid, less) } if mid < end && end < b { symMergeLessFunc(data, mid, end, b, less) } } // rotateLessFunc rotates two consecutive blocks u = data[a:m] and v = data[m:b] in data: // Data of the form 'x u v y' is changed to 'x v u y'. // rotate performs at most b-a many calls to data.Swap, // and it assumes non-degenerate arguments: a < m && m < b. func rotateLessFunc[Elem any](data []Elem, a, m, b int, less func(a, b Elem) bool) { i := m - a j := b - m for i != j { if i > j { swapRangeLessFunc(data, m-i, m, j, less) i -= j } else { swapRangeLessFunc(data, m-i, m+j-i, i, less) j -= i } } // i == j swapRangeLessFunc(data, m-i, m, i, less) }