1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
|
package chartplot
import (
"math"
"github.com/miguelmota/cointop/pkg/termui"
)
// ChartPlot ...
type ChartPlot struct {
t *termui.LineChart
}
// NewChartPlot ...
func NewChartPlot() *ChartPlot {
t := termui.NewLineChart()
// NOTE: empty list means don't show x-axis labels
t.DataLabels = []string{""}
t.Border = false
return &ChartPlot{
t: t,
}
}
// Height ...
func (c *ChartPlot) Height() int {
return c.t.Height
}
// SetHeight ...
func (c *ChartPlot) SetHeight(height int) {
c.t.Height = height
}
// Width ...
func (c *ChartPlot) Width() int {
return c.t.Width
}
// SetWidth ...
func (c *ChartPlot) SetWidth(width int) {
c.t.Width = width
}
// SetBorder ...
func (c *ChartPlot) SetBorder(enabled bool) {
c.t.Border = enabled
}
// SetData ...
func (c *ChartPlot) SetData(data []float64) {
// NOTE: edit `termui.LineChart.shortenFloatVal(float64)` to not
// use exponential notation.
c.t.Data = data
}
// GetChartPoints ...
func (c *ChartPlot) GetChartPoints(width int) [][]rune {
axisYWidth := 30
c.t.Data = interpolateData(c.t.Data, (width*2)-axisYWidth)
termui.Body = termui.NewGrid()
termui.Body.Width = width
termui.Body.AddRows(
termui.NewRow(
termui.NewCol(12, 0, c.t),
),
)
var points [][]rune
// calculate layout
termui.Body.Align()
w := termui.Body.Width
h := c.Height()
row := termui.Body.Rows[0]
b := row.Buffer()
for i := 0; i < h; i = i + 1 {
var rowpoints []rune
for j := 0; j < w; j = j + 1 {
p := b.At(j, i)
rowpoints = append(rowpoints, p.Ch)
}
points = append(points, rowpoints)
}
return points
}
func interpolateData(data []float64, width int) []float64 {
var res []float64
stepFactor := float64(len(data)-1) / float64(width-1)
res = append(res, data[0])
for i := 1; i < width-1; i++ {
step := float64(i) * stepFactor
before := math.Floor(step)
after := math.Ceil(step)
atPoint := step - before
pointBefore := data[int(before)]
pointAfter := data[int(after)]
interpolated := pointBefore + (pointAfter-pointBefore)*atPoint
res = append(res, interpolated)
}
res = append(res, data[len(data)-1])
return res
}
|