summaryrefslogtreecommitdiffstats
path: root/src/main.rs
blob: b3d798514a105cda3438611f4c9b85f1d00953ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#![feature(async_closure)]
use crossterm::{input, AlternateScreen, InputEvent, KeyEvent};
use std::{io, sync::mpsc, thread, time::Duration};
use tui::{backend::CrosstermBackend, Terminal};

mod app;
use app::data_collection;

mod canvas;

#[macro_use]
extern crate log;

enum Event<I> {
	Input(I),
	Update(Box<app::Data>),
}

const STALE_MAX_SECONDS : u64 = 60;

#[tokio::main]
async fn main() -> Result<(), io::Error> {
	let screen = AlternateScreen::to_alternate(true)?;
	let backend = CrosstermBackend::with_alternate_screen(screen)?;
	let mut terminal = Terminal::new(backend)?;

	let tick_rate_in_milliseconds : u64 = 250;
	let update_rate_in_milliseconds : u64 = 1000; // TODO: Must set a check to prevent this from going into negatives!

	let mut app = app::App::new("rustop");

	let log = init_logger();

	terminal.hide_cursor()?;
	// Setup input handling
	let (tx, rx) = mpsc::channel();
	{
		let tx = tx.clone();
		thread::spawn(move || {
			let input = input();
			let reader = input.read_sync();
			for event in reader {
				if let InputEvent::Keyboard(key) = event {
					if tx.send(Event::Input(key.clone())).is_err() {
						return;
					}
				}
			}
		});
	}

	// Event loop
	let mut data_state = app::DataState::default();
	data_state.init();
	data_state.set_stale_max_seconds(STALE_MAX_SECONDS);
	data_state.set_temperature_type(app.temperature_type.clone());
	{
		let tx = tx.clone();
		thread::spawn(move || {
			let tx = tx.clone();
			loop {
				futures::executor::block_on(data_state.update_data()); // TODO: Fix
				tx.send(Event::Update(Box::from(data_state.data.clone()))).unwrap();
				thread::sleep(Duration::from_millis(update_rate_in_milliseconds));
			}
		});
	}

	terminal.clear()?;

	let mut app_data = app::Data::default();
	let mut canvas_data = canvas::CanvasData::default();

	loop {
		if let Ok(recv) = rx.recv_timeout(Duration::from_millis(tick_rate_in_milliseconds)) {
			match recv {
				Event::Input(event) => {
					try_debug(&log, "Input event fired!");
					match event {
						KeyEvent::Char(c) => app.on_key(c),
						KeyEvent::Left => app.on_left(),
						KeyEvent::Right => app.on_right(),
						KeyEvent::Up => app.on_up(),
						KeyEvent::Down => app.on_down(),
						KeyEvent::Ctrl('c') => break,
						_ => {}
					}

					if app.to_be_resorted {
						data_collection::processes::sort_processes(&mut app_data.list_of_processes, &app.process_sorting_type, app.process_sorting_reverse);
						app.to_be_resorted = false;
					}
					try_debug(&log, "Input event complete.");

					// Only update processes
				}
				Event::Update(data) => {
					try_debug(&log, "Update event fired!");
					app_data = *data;
					data_collection::processes::sort_processes(&mut app_data.list_of_processes, &app.process_sorting_type, app.process_sorting_reverse);
					try_debug(&log, "Update event complete.");

					// Convert all data into tui components
					canvas_data.disk_data = update_disk_row(&app_data);
					canvas_data.temp_sensor_data = update_temp_row(&app_data, &app.temperature_type);
					canvas_data.process_data = update_process_row(&app_data);
					canvas_data.mem_data = update_mem_data_points(&app_data);
					canvas_data.swap_data = update_swap_data_points(&app_data);
					canvas_data.cpu_data = update_cpu_data_points(&app_data);
				}
			}
			if app.should_quit {
				break;
			}
		}

		// Draw!
		// TODO: We should change this btw! It should not redraw everything on every tick!
		canvas::draw_data(&mut terminal, &canvas_data)?;
	}

	Ok(())
}

fn update_temp_row(app_data : &app::Data, temp_type : &app::TemperatureType) -> Vec<Vec<String>> {
	let mut sensor_vector : Vec<Vec<String>> = Vec::new();

	for sensor in &app_data.list_of_temperature_sensor {
		sensor_vector.push(vec![
			sensor.component_name.to_string(),
			sensor.temperature.to_string()
				+ match temp_type {
					app::TemperatureType::Celsius => "C",
					app::TemperatureType::Kelvin => "K",
					app::TemperatureType::Fahrenheit => "F",
				},
		]);
	}

	sensor_vector
}

fn update_disk_row(app_data : &app::Data) -> Vec<Vec<String>> {
	let mut disk_vector : Vec<Vec<String>> = Vec::new();
	for disk in &app_data.list_of_disks {
		disk_vector.push(vec![
			disk.name.to_string(),
			disk.mount_point.to_string(),
			format!("{:.1}%", disk.used_space as f64 / disk.total_space as f64 * 100_f64),
			(disk.free_space / 1024).to_string() + "GB",
			(disk.total_space / 1024).to_string() + "GB",
		]);
	}

	disk_vector
}

fn update_process_row(app_data : &app::Data) -> Vec<Vec<String>> {
	let mut process_vector : Vec<Vec<String>> = Vec::new();

	for process in &app_data.list_of_processes {
		process_vector.push(vec![
			process.pid.to_string(),
			process.command.to_string(),
			format!("{:.1}%", process.cpu_usage_percent),
			format!(
				"{:.1}%",
				if let Some(mem_usage) = process.mem_usage_percent {
					mem_usage
				}
				else if let Some(mem_usage_in_mb) = process.mem_usage_mb {
					if let Some(mem_data) = app_data.memory.last() {
						mem_usage_in_mb as f64 / mem_data.mem_total_in_mb as f64 * 100_f64
					}
					else {
						0_f64
					}
				}
				else {
					0_f64
				}
			),
		]);
	}

	process_vector
}

fn update_cpu_data_points(app_data : &app::Data) -> Vec<(String, Vec<(f64, f64)>)> {
	let mut cpu_vector : Vec<(String, Vec<(f64, f64)>)> = Vec::new();
	let mut data_vector : Vec<Vec<(f64, f64)>> = Vec::new();

	if !app_data.list_of_cpu_packages.is_empty() {
		for cpu_num in 0..app_data.list_of_cpu_packages.last().unwrap().cpu_vec.len() {
			let mut this_cpu_data : Vec<(f64, f64)> = Vec::new();
			let current_time = std::time::Instant::now();

			for cpu in &app_data.list_of_cpu_packages {
				this_cpu_data.push((STALE_MAX_SECONDS as f64 - current_time.duration_since(cpu.instant).as_secs_f64(), cpu.cpu_vec[cpu_num].cpu_usage));
			}

			data_vector.push(this_cpu_data);
		}

		for (i, data) in data_vector.iter().enumerate() {
			cpu_vector.push((
				(&*(app_data.list_of_cpu_packages.last().unwrap().cpu_vec[i].cpu_name)).to_string() + " " + &format!("{:.2}", data.last().unwrap_or(&(0_f64, 0_f64)).1.to_string()),
				data.clone(),
			))
		}
	}

	cpu_vector
}

fn update_mem_data_points(app_data : &app::Data) -> Vec<(f64, f64)> {
	convert_mem_data(&app_data.memory)
}

fn update_swap_data_points(app_data : &app::Data) -> Vec<(f64, f64)> {
	convert_mem_data(&app_data.swap)
}

fn convert_mem_data(mem_data : &[app::data_collection::mem::MemData]) -> Vec<(f64, f64)> {
	let mut result : Vec<(f64, f64)> = Vec::new();
	let current_time = std::time::Instant::now();

	for data in mem_data {
		result.push((