summaryrefslogtreecommitdiffstats
path: root/src/app/data_farmer.rs
blob: 151a710d0476dc06a6e82cff7f28c194e82991ba (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
use crate::data_harvester::{cpu, disks, mem, network, processes, temperature, Data};
/// In charge of cleaning, processing, and managing data.  I couldn't think of
/// a better name for the file.  Since I called data collection "harvesting",
/// then this is the farmer I guess.
///
/// Essentially the main goal is to shift the initial calculation and distribution
/// of joiner points and data to one central location that will only do it
/// *once* upon receiving the data --- as opposed to doing it on canvas draw,
/// which will be a costly process.
///
/// This will also handle the *cleaning* of stale data.  That should be done
/// in some manner (timer on another thread, some loop) that will occasionally
/// call the purging function.  Failure to do so *will* result in a growing
/// memory usage and higher CPU usage - you will be trying to process more and
/// more points as this is used!
use std::time::Instant;
use std::vec::Vec;

pub type TimeOffset = f64;
pub type Value = f64;
pub type JoinedDataPoints = (Value, Vec<(TimeOffset, Value)>);

#[derive(Debug, Default)]
pub struct TimedData {
	pub rx_data: JoinedDataPoints,
	pub tx_data: JoinedDataPoints,
	pub cpu_data: Vec<JoinedDataPoints>,
	pub mem_data: JoinedDataPoints,
	pub swap_data: JoinedDataPoints,
	// Unused for now
	// pub io_data : JoinedDataPoints
	// pub temp_data: JoinedDataPoints,
}

/// AppCollection represents the pooled data stored within the main app
/// thread.  Basically stores a (occasionally cleaned) record of the data
/// collected, and what is needed to convert into a displayable form.
///
/// If the app is *frozen* - that is, we do not want to *display* any changing
/// data, keep updating this, don't convert to canvas displayable data!
///
/// Note that with this method, the *app* thread is responsible for cleaning -
/// not the data collector.
#[derive(Debug)]
pub struct DataCollection {
	pub current_instant: Instant,
	pub timed_data_vec: Vec<(Instant, TimedData)>,
	pub network_harvest: network::NetworkHarvest,
	pub memory_harvest: mem::MemHarvest,
	pub swap_harvest: mem::MemHarvest,
	pub cpu_harvest: cpu::CPUHarvest,
	pub process_harvest: Vec<processes::ProcessHarvest>,
	pub disk_harvest: Vec<disks::DiskHarvest>,
	pub io_harvest: disks::IOHarvest,
	pub io_labels: Vec<(u64, u64)>,
	io_prev: Vec<(u64, u64)>,
	pub temp_harvest: Vec<temperature::TempHarvest>,
}

impl Default for DataCollection {
	fn default() -> Self {
		DataCollection {
			current_instant: Instant::now(),
			timed_data_vec: Vec::default(),
			network_harvest: network::NetworkHarvest::default(),
			memory_harvest: mem::MemHarvest::default(),
			swap_harvest: mem::MemHarvest::default(),
			cpu_harvest: cpu::CPUHarvest::default(),
			process_harvest: Vec::default(),
			disk_harvest: Vec::default(),
			io_harvest: disks::IOHarvest::default(),
			io_labels: Vec::default(),
			io_prev: Vec::default(),
			temp_harvest: Vec::default(),
		}
	}
}

impl DataCollection {
	pub fn clean_data(&mut self, max_time_millis: u128) {
		let current_time = Instant::now();

		let mut remove_index = 0;
		for entry in &self.timed_data_vec {
			if current_time.duration_since(entry.0).as_millis() >= max_time_millis {
				remove_index += 1;
			} else {
				break;
			}
		}

		self.timed_data_vec.drain(0..remove_index);
	}

	pub fn eat_data(&mut self, harvested_data: &Data) {
		let harvested_time = harvested_data.last_collection_time;
		let mut new_entry = TimedData::default();

		// Network
		self.eat_network(&harvested_data, harvested_time, &mut new_entry);

		// Memory and Swap
		self.eat_memory_and_swap(&harvested_data, harvested_time, &mut new_entry);

		// CPU
		self.eat_cpu(&harvested_data, harvested_time, &mut new_entry);

		// Temp
		self.eat_temp(&harvested_data);

		// Disks
		self.eat_disks(&harvested_data, harvested_time);

		// Processes
		self.eat_proc(&harvested_data);

		// And we're done eating.  Update time and push the new entry!
		self.current_instant = harvested_time;
		self.timed_data_vec.push((harvested_time, new_entry));
	}

	fn eat_memory_and_swap(
		&mut self, harvested_data: &Data, harvested_time: Instant, new_entry: &mut TimedData,
	) {
		// Memory
		let mem_percent = harvested_data.memory.mem_used_in_mb as f64
			/ harvested_data.memory.mem_total_in_mb as f64
			* 100.0;
		let mem_joining_pts = if let Some((time, last_pt)) = self.timed_data_vec.last() {
			generate_joining_points(*time, last_pt.mem_data.0, harvested_time, mem_percent)
		} else {
			Vec::new()
		};
		let mem_pt = (mem_percent, mem_joining_pts);
		new_entry.mem_data = mem_pt;

		// Swap
		if harvested_data.swap.mem_total_in_mb > 0 {
			let swap_percent = harvested_data.swap.mem_used_in_mb as f64
				/ harvested_data.swap.mem_total_in_mb as f64
				* 100.0;
			let swap_joining_pt = if let Some((time, last_pt)) = self.timed_data_vec.last() {
				generate_joining_points(*time, last_pt.swap_data.0, harvested_time, swap_percent)
			} else {
				Vec::new()
			};
			let swap_pt = (swap_percent, swap_joining_pt);
			new_entry.swap_data = swap_pt;
		}

		// In addition copy over latest data for easy reference
		self.memory_harvest = harvested_data.memory.clone();
		self.swap_harvest = harvested_data.swap.clone();
	}

	fn eat_network(
		&mut self, harvested_data: &Data, harvested_time: Instant, new_entry: &mut TimedData,
	) {
		// RX
		let logged_rx_val = if harvested_data.network.rx as f64 > 0.0 {
			(harvested_data.network.rx as f64).log(2.0)
		} else {
			0.0
		};

		let rx_joining_pts = if let Some((time, last_pt)) = self.timed_data_vec.last() {
			generate_joining_points(*time, last_pt.rx_data.0, harvested_time, logged_rx_val)
		} else {
			Vec::new()
		};
		let rx_pt = (logged_rx_val, rx_joining_pts);
		new_entry.rx_data = rx_pt;

		// TX
		let logged_tx_val = if harvested_data.network.tx as f64 > 0.0 {
			(harvested_data.network.tx as f64).log(2.0)
		} else {
			0.0
		};

		let tx_joining_pts = if let Some((time, last_pt)) = self.timed_data_vec.last() {
			generate_joining_points(*time, last_pt.tx_data.0, harvested_time, logged_tx_val)
		} else {
			Vec::new()
		};
		let tx_pt = (logged_tx_val, tx_joining_pts);
		new_entry.tx_data = tx_pt;

		// In addition copy over latest data for easy reference
		self.network_harvest = harvested_data.network.clone();
	}

	fn eat_cpu(
		&mut self, harvested_data: &Data, harvested_time: Instant, new_entry: &mut TimedData,
	) {
		// Note this only pre-calculates the data points - the names will be
		// within the local copy of cpu_harvest.  Since it's all sequential
		// it probably doesn't matter anyways.
		for (itx, cpu) in harvested_data.cpu.iter().enumerate() {
			let cpu_joining_pts = if let Some((time, last_pt)) = self.timed_data_vec.last() {
				generate_joining_points(
					*time,
					last_pt.cpu_data[itx].0,
					harvested_time,
					cpu.cpu_usage,
				)
			} else {
				Vec::new()
			};

			let cpu_pt = (cpu.cpu_usage, cpu_joining_pts);
			new_entry.cpu_data.push(cpu_pt);
		}

		self.cpu_harvest = harvested_data.cpu.clone();
	}

	fn eat_temp(&mut self, harvested_data: &Data) {
		// TODO: [PO] To implement
		self.temp_harvest = harvested_data.temperature_sensors.clone();
	}

	fn eat_disks(&mut self, harvested_data: &Data, harvested_time: Instant) {
		// TODO: [PO] To implement

		let time_since_last_harvest = harvested_time
			.duration_since(self.current_instant)
			.as_secs_f64();

		for (itx, device) in harvested_data.disks.iter().enumerate() {
			if let Some(trim) = device.name.split('/').last() {
				let io_device = harvested_data.io.get(trim);
				if let Some(io) = io_device {
					let io_r_pt = io.read_bytes;
					let io_w_pt = io.write_bytes;

					if self.io_labels.len() <= itx {
						self.io_prev.push((io_r_pt, io_w_pt));
						self.io_labels.push((0, 0));
					} else {
						let r_rate = ((io_r_pt - self.